立即注册找回密码

QQ登录

只需一步,快速开始

微信登录

微信扫一扫,快速登录

手机动态码快速登录

手机号快速注册登录

搜索
小桔灯网 门户 资讯中心 技术杂谈 查看内容

比较基因测序技术的1,2,3,4代,代代不一样!

2024-8-23 14:21| 编辑: 归去来兮| 查看: 617| 评论: 0|来源: 纳米孔新讯网

摘要: 1975年至今,基因测序技术已经发展到第四代


第一个人类的基因组,从1990年到2003年,由2000名科学家历时13年,花费38亿美金才完成,图谱中包含了人类染色体的近30亿个碱基对的核苷酸序列,由于高度重复的DNA块组成,当时技术的局限,这份图谱仍留下了约8%的空白区,这部分的测序难度非常大。1975年至今,基因测序技术已经发展到第四代,测序时间从13年缩短到5小时,测序金额从38亿美金降低到1000元人民币。

从20世纪70年代到现在有很多测序技术和平台的产生,其中包括SBC法、454、Ion Torrent、SBL法、Sanger法、Illumina、Pacbio、Nanopore等。近半世纪以来,基因测序技术飞速发展,从一代发展至四代,发生了日新月异的变化,今天主要跟大家分享后四种常用的测序技术。


测序技术发展里程碑


第一代测序





第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解),为方便起见,统称为Sanger法。在1977年,Sanger测定了第一个基因组序列——噬菌体phiX-174,全长只有5,375个碱基。

虽然与今日的技术比起来根本不算什么,但自此之后,人类获得了窥探生命本质的能力,并以此为开端真正步入了基因组学时代。

核心原理:由于双脱氧核苷酸(ddNTP)的3’位置脱氧,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影,根据电泳带的位置确定待测分子的DNA序列。

在每个反应体系中,ddNTP相对于dNTP是很少的,所以只有部分新链在不同的位置特异性终止,最终就会得到一系列长度不一的序列。

Sanger法测序读长长、准确度高,但是通量不高。总的来说,第一代测序技术的主要特点是测序读长可达1,000bp,准确性高达99.999%,但其测序成本偏高(相对基因组大小),通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是理想的测序方法。

优点:一代测序准确性最高,几乎达到100%,是公认的测序技术的“金标准”。

缺点:一代测序的缺点是速度慢、费用高、只能同时测序一条DNA模板。

费用:3000元左右。


二代测序技术在大幅提高了测序速度的同时,还大大地降低了测序成本,其测序成本近五年来从几千元1G(1G即10亿碱基)降到了到今天的40多块钱1G数据量,并且保持了高准确性,以前完成一个人类基因组的测序需要3年时间,而使用二代测序技术则仅仅需要1周,但其序列读长方面比起第一代测序技术则要短很多,大多只100bp-150bp。

目前illumina的测序仪占全球75%以上,以NextSeq、HiSeq、NovaSeq等系列为主。它的机器采用的都是边合成边测序的方法,读长短(50-300bp);准确度达99.9%;通量很高。以Illumina平台为代表的第二代测序技术实现了高通量测序,有了革命性进展,使得大规模并行测序成为现实,极大推动了生命科学领域基因组学的发展。Illumina循环SBS法(cycle SBS)即SBRT(Sequencing By Reversible Termination,可逆终止)的核心技术是DNA合成的可逆性末端循环,即3'-OH可逆性的修饰和去修饰。

基本原理:dNTP的3'-OH以叠氮基团RTG(Reversible Terminating Group,可逆末端基团)进行修饰;将4种碱基分别与不同的荧光分子连接;DNA合成时,RTG能起到类似于ddNTP的作用终止反应;每次合成反应终止并读取信号之后,洗脱RTG和荧光分子,进行下一轮循环。

但是第二代基因测序技术的局限性也显而易见:一是需要分子扩增,二是使用光学系统检测,三是必须有足够多的样本才能降低测序成本,这些部分限制了基因测序的推广,阻碍其走向产品和服务的基因消费时代。

但其技术硬伤还在于:

1、读长短的缺点导至测序过程中含量较少的序列信息可能会丢失,且PCR过程中有一定概率会引入错配碱基;

2、想要得到准确和长度较长的拼接结果,需要测序的覆盖率较高,导至结果错误较多和成本增加。

Illumina测序读长短、通量高、准确度高,在进行基因组组装或者结构变异分析的时候没有优势,可用作三四代测序read的纠错。

优点:二代测序高通量,非常适合进行基因组、转录组以及表观遗传学方面的检测。除此以外,单条序列测序成本非常低廉,仅仅相当于第一代测序技术的1%。

缺点:二代测序检测序列较短,测序前需要PCR扩增,错误率比一代稍高,为了降低错误率,可以使用Sanger测序技术对第二代测序技术检测出的变异进行验证。这也正是Sanger测序沿用至今的原因。

费用:5000-8000元左右。

第三代测序


以PacBio公司的SMRT单分子测序技术为代表。与前两代相比,最大的特点就是单分子测序,测序过程无需进行PCR扩增,超长读长,是二代测序技术的100倍以上。这种纳米孔单分子测序仪还有另一大特点,它能够直接读取出甲基化的胞嘧啶,而不必像二代测序方法那样需要事先对基因组进行bisulfite处理。这对于在基因组水平直接研究表观遗传相关现象有极大的帮助。

基本原理:Pacbio仍然采用边合成边测序的原理,但实现了两个重要的技术突破。一个是将荧光分子标记在磷酸上,这样在反应停止且捕获荧光信号以后,可直接随磷酸基团脱落,解决了因噪音污染导至的读长很短的问题;二是由于不需要PCR扩增,信号的有效提取成为了关键。通过引入零模波导孔(ZMW)技术解决这一问题。在纳米室底部有一个孔径70nm的小孔,由于远远小于激光的波长,所以激光从底部照射时,只会照亮一个小的区域,提高了信噪比。

SMRT技术的测序速度很快,每秒约10个dNTP。但这么快的测序速度也带来了一些明显的缺点——测序错误率比较高(这几乎是目前单分子测序技术的通病),可以达到10%-15%,而且以随机的缺失序列和错位居多。

优点:Pacbio三代测序设备在DNA 序列片段读长上优于二代设备,测序读长长、通量高、可进行甲基化的直接测序。

缺点:在准确度上较二代设备差,准确度不高,但可通过测序深度弥补,GC偏差低,

费用:单样本的测序成本一直居高不下。

第四代测序


以Oxford Nanopore Technologies为代表的纳米孔测序技术与其他测序技术不同的是,它基于电信号而不是光信号。经历了三个主要的技术革新:一、单分子DNA从纳米孔通过;二、纳米孔上的酶对于测序分子在单核苷酸精度的控制;三、单核苷酸的测序精度控制。主要是通过ssDNA或RNA模板分子通过纳米孔而带来的“电信号”变化推测碱基组成进行实时测序。

基本原理:将在某一面上含有一对电极的特殊脂质双分子层置于一个微孔之上,该双分子层中含有很多由α溶血素蛋白组成的纳米孔(直径2.6nm),只能容纳一个核苷酸通过,并且每个纳米孔会结合一个核酸外切酶。当DNA模板进入孔道时,孔道中的核酸外切酶会“抓住”DNA分子,顺序剪切掉穿过纳米孔道的DNA碱基,每一个碱基通过纳米孔时都会产生一个阻断,根据阻断电流的变化就能检测出相应碱基的种类,从而进行实时测序,最终得到DNA分子的序列。

Nanopore特点是单分子测序,通量高、测序读长长(超过150kb),测序速度快,测序数据实时监控,机器方便携带等。但其单芯片测序成本还是在几百美金以上,准确度低,不可通过测序深度弥补,但可通过Illumina read 纠错。

声明:
1、凡本网注明“来源:小桔灯网”的所有作品,均为本网合法拥有版权或有权使用的作品,转载需联系授权。
2、凡本网注明“来源:XXX(非小桔灯网)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。其版权归原作者所有,如有侵权请联系删除。
3、所有再转载者需自行获得原作者授权并注明来源。

鲜花

握手

雷人

路过

鸡蛋

最新评论

关闭

官方推荐 上一条 /3 下一条

客服中心 搜索 官方QQ群 洽谈合作
返回顶部