总结
模拟仿真不仅是微流控芯片设计的“虚拟实验室”,更是推动其从原型到量产的核心技术支撑。通过精准建模和多维度分析,能够显著提升设计效率,降低风险,并为复杂功能集成提供理论依据。
原文文献:
1. Zhao P, Liu X, Zhang X, et al. Flow shear stress controls the initiation of neovascularization via heparan sulfate proteoglycans within a biomimetic microfluidic model[J]. Lab on a Chip, 2021, 21(2): 421-434.
2. Qi X, Zhou Q, Li X, et al. Generation of Multiple Concentration Gradients Using a Two-Dimensional Pyramid Array[J]. Analytical Chemistry, 2023, 96(2): 856-865.
3. Zhao Y, Zheng Z, Liu J, et al. Structural Optimization of Microfluidic Chips for Enhancing Droplet Manipulation and Observation via Electrodynamics Simulation[J]. Cyborg and Bionic Systems, 2025, 6: 0217.
4. Abedini-Nassab R, Shourabi R. High-throughput precise particle transport at single-particle resolution in a three-dimensional magnetic field for highly sensitive bio-detection[J]. Scientific Reports, 2022, 12(1): 6380.
5. Wang X, Cai X, Wan C, et al. Data‐Driven Theoretical Modeling of Centrifugal Step Emulsification and Its Application in Comprehensive Multiscale Analysis[J]. Advanced Science, 2025: 2411459.
6. Huang J, Li W, Chen B, et al. Pseudo three-dimensional topology optimization of chip heat sinks with various inlet–outlet arrangements[J]. International Journal of Heat and Fluid Flow, 2025, 111: 109670. 欢迎联系留言 解锁更多微流控芯片详情 产品试用福利多多~