金桔
金币
威望
贡献
回帖0
精华
在线时间 小时
|
[下面有机器翻译!不要像评论区里面辣味运气不佳的阅览者一样,查英文字典看了三个小时的第一段,结果发现有翻译?!]
III. LIFE OUTSIDE THE HABITABLE ZONE
It has been pointed out that life outside the habitable zone may be possible on planets with subsurface oceans [14]. Allowing for the possibility of subsurface ocean worlds yields a frequency of planets η ∼1. Now, because the planets with subsurface oceans outside the habitable zone are more common than rocky planets in the habitable zone, one may wonder why do we find ourselves on the latter. The answer to this question most likely stems from the fact that “we” refers to an intelligent, conscious and technologically sophisticated species. In other words, albeit the probability of life on subsurface worlds may be non-negligible, it is quite plausible that the likelihood of technological life could instead be selectively lowered. In this section we explorethepossibilitythatlifeelsewherecouldhaveanoncarbon chemical foundation; e.g., in the spirit of [15, 16] weenvisionaraceofintelligentsilicon-basedlifeforms. Considering that Earth is the only reference point we havewhenstudyinglife,itisunsurprisingthatbiochemistry has always been connected to the elements of carbon,hydrogen,oxygen,andnitrogen. Moreover,carbon can form bonds with many other non-metals, as well as large polymers. These unique qualities have led many to argue that carbon is a pre-requisite for the existence of even very simple life. However, this must not necessarily be true. It has long been suspected that silicon and germanium can enter into some of the same kind chemicalreactionsthancarbondoes[2]. Recentresearch in both chemistry and astrobiology has shown that it is theoretically quite feasible for silicon to form complex, self-replicatingsystemssimilartotheonesthatproduced thefirst,simpleformsoflifeonEarth[17,18]. Moreconcretely: • Silicon is able to form stable covalent bonds with itself, as well as stable compounds with carbon and oxygen [19]. These structures can form many diverse systems, including ring systems, which could be analogs to sugars, a key component of biochemistryonEarth. Thisstabilityisaprerequisite for building the complex chemical structures
that support life on Earth, making silicon a strong contender. • Silanols, the silicon containing analogues of alcoholshavesurprisingsolubilityproperties,withdiisobutylsilanediolbeingsolubleinwaterandhexane [20]. Solubility is another crucial factor in the development of life, since having a solvent and a substance is the model for early development of life that we see on Earth. • Silicon’schiralproperties. AlllifeonEarthismade ofmoleculesthattwistinthesamedirection,thatis they have an inherent handedness. In other words, each of life’s molecular building blocks (amino acids and sugars) has a twin: not an identical one, but a mirror image. On Earth, the amino acids characteristicoflifeareall“left-handed”inshape, and cannot be exchanged for their right-handed doppelg¨anger. Meanwhile, all sugars characteristic of life on Earth are “right-handed.” The opposite hands for both amino acids and sugars exist in the universe, but they just are not utilized by any known biological life form. (Some bacteria can actually convert right-handed amino acids into the left-handed version, but they cannot use the right-handed ones as is.) This phenomenon of biological shape selection is called chirality – from theGreekforhandedness. Wesaythatbothsugars and amino acids on Earth are homochiral: onehanded. Though we are still unsure why it is that the moleculesofcarbon-basedlifechooseonlyoneorientation, it seems reasonable to require that in order for silicon to replicate the processes that originated life on Earth the molecules must also be chiral, and exist in a left- or right-handed forms in potential living environments. There is certainly reason to be optimistic: an observation of chirality in noncrystalline silica chiral nano-ribbons has been reported in [21]. • Silicon’shighreactivityisabarriertoformingcomplex structures on Earth, as this high rate of reaction leaves little time for construction. However, this only holds true for environments with a climate similar to earth. On the outskirts of the solar system, where the reactivity of carbon is severely impactedbythedropintemperature,silicon’shigh reaction rate could be the key to the development oflifeinthesecryogenicenvironments,allowingit to flourish where carbon based life would be impossible. One probable environment for silicon life is liquid nitrogen[18]. Nitrogenisoneofthefewsubstances that can still dissolve silicon at very cold temperatures, as solubi. Additionally, silicon is able to form stable covalent bonds with nitrogen, as well as with itself. The habitable zone for silicon life would then depend on the area around a star in which nitrogen is a liquid.
3居住区外的生命
有人指出,在宜居带之外的行星上可能存在生命,而这些行星的地下有海洋[14]。考虑到存在次表层海洋世界的可能性,η∼1行星的出现频率非常高。现在,因为在宜居带之外有次表层海洋的行星比在宜居带的岩石行星更常见,人们可能会好奇为什么我们发现自己在后者。这个问题的答案很可能源于这样一个事实:“我们”指的是一种智能的、有意识的、技术复杂的物种。换句话说,尽管地下世界存在生命的可能性不容忽视,但有选择地降低存在技术生命的可能性是很有道理的。在本节中,我们探讨了生活在没有碳化学基础的地方的可能性;例如,本着[15,16]的精神,我们设想了一种以硅为基础的生物形式。考虑到地球是我们研究生命时唯一的参照点,生物化学总是与碳、氢、氧、氮元素联系在一起就不足为奇了。此外,碳可以与许多其他非金属以及大型聚合物形成化学键。这些独特的特性使得许多人认为碳是即使是非常简单的生命存在的先决条件。然而,这未必是真的。长期以来,人们一直怀疑,硅和锗可以进入一些类似的化学反应。最近的化学和天体生物学研究表明,从理论上讲,硅可以形成复杂的、自我复制的系统,这种系统与地球上第一个产生简单生命的系统相似[17,18]。
·硅既能与自身形成稳定的共价键,又能与碳、氧[19]形成稳定的化合物。这些结构可以形成许多不同的系统,包括环系统,它可能类似于糖,是地球生物化学的关键组成部分。这种稳定性是构建地球上支持生命的复杂化学结构的先决条件,使硅成为一个强有力的竞争者。硅烷醇是醇的含硅类似物,具有惊人的溶解性,二异丁基硅烷二醇可溶于水和正己烷[20]。溶解度是生命发展的另一个关键因素,因为有溶剂和物质是我们在地球上看到的生命早期发展的模型。
·硅的手性。地球上所有的生命都是由分子组成的,它们向同一个方向旋转,也就是说,它们有固有的旋向性。换句话说,生命的每一个分子构件(氨基酸和糖)都有一个双胞胎:不是完全相同的一个,而是一个镜像。在地球上,构成生命特征的氨基酸在形状上都是左旋的,并且不能被它们的右旋二重身愤怒所取代。同时,地球上生命所特有的糖都是右手性的。氨基酸和糖在宇宙中都存在相反的作用,但它们只是没有被任何已知的生物生命形式所利用。(有些细菌实际上可以将右手性氨基酸转化为左手性氨基酸,但它们不能使用右手性氨基酸。)这种生物形状选择的现象被称为手性,来源于希腊语中的“利手性”。我们说地球上的糖和氨基酸都是单手异构的。尽管我们还不能确定为什么碳基生命的分子只选择一个方向,它似乎是合理的要求,为了使硅复制地球上生命起源的过程也必须是手性分子,和左或右撇子的形式存在于潜在的生活环境。当然,我们有理由感到乐观:在[21]中观察到非晶体硅手性纳米带。
•硅在地球上更难以形成复杂结构,因为这种高速率的反应几乎没有留给构造的时间。然而,这只适用于气候与地球相似的环境。在太阳系的外围,碳的反应性受到下降温度的严重影响,硅的高反应速率可能是这些生态环境中生命发展的关键,使其在不可能以碳为基础的生命的地方蓬勃发展。硅生命的一个可能环境是液态氮[18]。氮是少数仍能在极低温度下溶解硅的物质之一。此外,硅能够与氮以及自身形成稳定的共价键。硅生命的宜居地带将取决于恒星周围以液态氮存在的区域。
5
Neptune’s moon, Triton, has been considered a candidate for surface level nitrogen lakes [22]. Triton is the only large satellite in the solar system to circle a planet in a retrograde direction, i.e. in a direction opposite to the rotation of the planet. The retrograde orbit and Triton’s relatively high density suggest that this satellite may have been captured by Neptune as it traveled through space several billion years ago. If this were the case, tidal heating could have melted Triton in its originally eccentric orbit, and the satellite might have been liquidforaslongasonebillionyearsafteritscaptureby Neptune. However, presently Triton is quite cold, with a surface temperature of 38 K, and an extremely thin atmosphere (the atmospheric pressure at Triton’s surface isabout14microbars,1/70,000ththesurfacepressureon Earth). Nitrogen ice particles might form thin clouds a few kilometers above the surface. Hence, even though the surface temperature is below the freezing point of liquidnitrogenitisreasonabletoassumethatthealbedo of a hypothetical planet that could support silicon life will be similar to that of Triton, αTriton ∼0.6 [23]. Next, using (13) we determine the habitable zone of silicon-based life for a main sequence star like our sun, with temperature T and radius R . We take the planetary surface temperature in between the boiling and freezing point of liquid nitrogen, 63.15 < Tp/K < 77.36. Plugging in these values in (13) we find that for a main sequence star like our sun, the habitable zone of siliconbasedlifestretchesfrom1.24billionkmto1.85billionkm from the star. We can now estimate what planets within the solar system fall into the silicon habitable zone during all parts of their orbit. The two planets closest to the silicon habitable zone are Saturn and Uranus. Saturn has a perihelion of 1.35 billion km and aphelion of 1.51billionkm,meaningthatitiswithintheproperdistancerangeforsiliconbiochemistry. However,Saturnis mostly a gas planet, and thus unsuitable for supporting any life. Uranus, on the other hand, has a perihelion of 2.75 billion km and aphelion 3.00 billion km, making it too cold for surface lakes or oceans of nitrogen. This result is also in agreement with the commonly accepted surfacetemperatureofUranus,roughly57K[24],which is below the freezing point of nitrogen. We expand our focus to include ultra-cool stars, such as TRAPPIST-1A, as they are the most common stars in the Milky Way, and thus their orbiting planets are representative of “average” star systems. More concretely, M-dwarfslikeProximaCentauriandTRAPPIST-1are10 timesmoreabundantthantheSun[25,26]andhavestellarlifetimesthatareabout100to1000timesgreater[27– 29]. Furthermore,exoplanetsaroundthesestarsareeasiertodetect(thetransitsignalsproducedbyEarth-sized planets are 80 times stronger than the signal produced bysimilarplanetstransitingaSun-likestar)andtheiratmospherescanbeanalyzedviatransitspectroscopy,thus enabling the ready detection of biomarkers [30]. However,variousphysicalmechanismscouldactinconcertto suppress the likelihood of Earth-based life on M-dwarf
exoplanets relative to their counterparts around solartype stars [31]. Nevertheless, this may not be the case forsilicon-basedalienlifeforms. Herein,weevaluatethe TRAPPIST-1systemasrepresentativeofultracoolstars, for which T? = 2,511 K, and R? = 84,179.7 km [32]. We generalize (13) substituting T by T? and R by R?, to find that the habitable zone for ultra-cool dwarf stars encompassesadistancerangebetween1.6millionkmto 3.0 millionkmfromtheplanet’sstar,whereasforsiliconbasedlifeonnitrogenlakesthehabitabilitycircumstellar region spans the orbital range within 28 million km and 42 million km. This seems to indicate the frequency of planets hosting any form of life must be extended. As for subsurface ocean worlds, we may take η ∼ 1 for intelligent, conscious and technologically sophisticated species.
5
海王星的卫星,海卫一,被认为是地表氮湖[22]的候选者。海卫一是太阳系中唯一一颗以逆行方向(即与行星自转方向相反)环绕行星的大型卫星。逆行轨道和海卫一相对较高的密度表明,这颗卫星可能是在几十亿年前穿越太空时被海王星捕获的。如果是这样的话,潮汐加热可能会使海卫一原本偏心轨道上的卫星融化,这颗卫星可能在被海王星俘获后的10亿年里都处于液体状态。但是,目前海卫一的温度非常低,表面温度只有38 K,大气非常稀薄(海卫一表面的大气压力约为14微巴,是地球表面压力的1/7万)。氮冰颗粒可能会在地表以上几公里处形成薄薄的云层。因此,即使表面温度低于液态氮的冰点,也有理由假设一颗能够支持硅生命的行星的反照率与海卫一相仿,α-海卫一的反照率约为0.6[23]。接下来,使用我们确定硅基生命的宜居区主序星像太阳,温度t和半径。我们计算行星表面温度在液氮的沸点和冰点之间,63.15 &lt;Tp / K & lt;77.36。将这些值代入(13),我们发现,对于像太阳这样的主序恒星,硅基生命的可居住区域距离恒星的距离为12.4亿公里到18.5亿公里。我们现在可以估计太阳系内哪些行星在其轨道的所有部分都落入了硅宜居带。最接近硅宜居带的两颗行星是土星和天王星。土星的近日点为13.5亿公里,远日点为15.1亿公里,这意味着它在硅生物化学的适当范围内。然而,土星主要是一颗气体行星,因此不适合维持任何生命。另一方面,天王星的近日点是27.5亿公里,远日点是3亿公里,这使得它对于地表湖泊或氮海洋来说太冷了。这一结果也与人们普遍接受的天王星表面温度(大约57k[24])相一致,这低于氮的冰点。我们将重点扩大到包括超冷恒星,如TRAPPIST-1A,因为它们是银河系中最常见的恒星,因此它们的轨道行星是“平均”恒星系统的代表。更具体地说,m - dwarfslikeproximacentauriandtrappist -1比太阳多10倍[25,26],并且寿命大约是太阳的100到1000倍[27 - 29]。此外,这些系外行星更容易被探测到(一年大小的行星产生的过境信号比类似恒星的行星产生的信号强80倍),它们的大气可以通过ransitesspectroscopy进行分析,因此可以方便地检测到生物标记[30]。然而,不同的生理学机制可能会抑制m -矮行星上存在地球生命的可能性
太阳系外行星相对于它们在太阳型恒星[31]周围的对应行星。然而,以硅为基础的外星生命形式可能并非如此。在此,我们评估trappist -1系统作为超链醇星的代表,其中T?= 2,511 K, R?= 84,179.7 km[32]。我们推广(13)代替T T ?由R和R ?该研究发现,超冷矮星的宜居带位于距离行星恒星160万公里到300万公里之间,而以硅为基础的生命体的宜居性围绕恒星运行的区域横跨轨道范围在2800万公里到4200万公里之间。这似乎表明,拥有任何形式生命的行星的频率必须延长。至于地下海洋世界,我们可以把有智慧、有意识、技术复杂的物种η到1。
【机翻,勉强看着吧】
文章来自该问题下 @赵泠 的回答,我没记错的话,是在一段“学术界也对硅基生命进行过一些不温不火的研究”下面。 |
|