主要方向:整合分析全基因组ChIP-chip/Seq、核小体定位、组蛋白修饰数据、开发生物信息学算法
主要成果:开发Model-based analysis of ChIP-Seq (MACS)、Cistrome数据库
Homepage: Liu Lab
注:已离开学术界,任职于GV20 Oncotherapy,董事会主席)
Bradley E. Bernstein
主要方向:Epigenomic Regulation in Development and Cancer
主要成果:The NIH Roadmap Epigenomics Mapping Consortium
Homepage: https://bernstein.dfci.harvard.edu/
Nancy Kleckner
主要方向:The Physical Biology of Chromosomes
主要成果:3C(Capturing Chromosome Conformation,通讯)
Homepage: Nancy Kleckner
University of Massachusetts Medical School
主要方向:genomic tools to the study of proteins of the epigenome: histones, transcription factors, nucleosome remodelers, and RNA polymerase II (RNAPII)
主要成果:ChEC-seq;DNase-seq;CUT&Tag;CUT&Run;CUT&Tag2for1;MulTI-Tag
Homepage: https://research.fredhutch.org/henikoff/en.html
University of California San Diego
任兵
主要方向:非编码序列如何指导基因表达的时空模式,表观遗传机制如何在发育过程中调节这些序列的作用
主要成果:chip-chip;识别和表征增强子的转录控制元件;Paired-seq;Paired-tag
Homepage: Bing Ren, Ph.D.
Massachusetts Institute of Technology(MIT)
Manolis Kellis
主要方向:epigenetic modifications to define chromatin states;comparative genomics;annotation of the non-coding genome;Regulatory Networks
主要成果:参与构建ENCODE数据库;ChromHMM: automating chromatin-state discovery and characterization
Homepage: Manolis Kellis (Kamvysselis)
Stanford University
主要方向: investigating how the dysfunction of heterochromatin, repetitive elements and transposons contributes to the oncogenic and aging processes
主要成果: Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells(Nature Genetics, 2019)
Homepage: https://zhangyxlab.github.io/
张垲( 导师:任兵)
主要方向:embracing a multidisciplinary approach to address pressing challenges in Regulatory Genomics
主要成果:A single-cell atlas of chromatin accessibility in the human genome(Cell, 2021)
Homepage: https://lab.kaizhang.org/
Northwestern University
主要方向:interested in cancer genomics and has demonstrated how epigenome and 3D genome structure are altered and led to gene dysregulation in different types of tumor
主要成果: A comparative encyclopedia of DNA elements in the mouse genome(Nature, 2014)
Homepage: http://yuelab.org/index.html
Washington University
Ting Wang
主要方向:investigating the evolutionary model of mobile elements (or transposable elements) and their roles in basic biology and cancer, including their genetic and epigenetic regulation
主要成果:Exploring genomic data coupled with 3D chromatin structures using the WashU Epigenome Browser(Nature Methods, 2022)
Homepage: https://wang.wustl.edu/about/
二:基因组学
Broad Institute of MIT and Harvard
Eric S. Lander(谨慎,有负面报道)
主要方向:human genetic variation; human population history; genome evolution; regulatory elements; long non-coding RNAs; three-dimensional folding of the human genome; and genome-wide screens to discover the genes essential for biological processes using CRISPR-based genome editing
主要成果:Broad Institute创始人、人类基因组计划首席科学家、GATK、IGV
Homepage: Eric S. Lander
Genentech
Aviv Regev
主要方向:single-cell genomics;The evolution of gene regulation;networks that regulate genes, define cells and tissues, and influence health and disease
主要成果:Fungal orthogroups;Cancer module map;Module networks;international Human Cell Atlas project首席科学家
Homepage: https://www.broadinstitute.org/regev-lab
Dana-Farber and Harvard Medical School
李恒
主要方向:比对等算法开发
主要成果:SAM格式设计;SAMtools;bwa;Minimap2;Chromap
Homepage: Heng Li's Homepage
Massachusetts Institute of Technology
Bonnie Berger
主要方向:Computational molecular biology;Network Inference;PPI networks;protein structural motif recognition and discovery;Compressive Genomics;molecular self-assembly and mis-assembly, and functional genomics
主要成果:Global alignment of multiple protein interaction networks with application to functional orthology detection
Homepage: Bonnie Berger | MIT Mathematics
Children's Hospital of Philadelphia
王凯
主要方向:bioinformatics methods to advance genomic medicine, deep neural network for long-read sequencing, deep phenotyping on electronic health records, graduate rotation and undergraduate research projects
主要成果:ANNOVAR, wANNOVAR, PennCNV
Homepage: Wang Lab
北京大学
主要方向:机器学习与生物和医学大数据分析、人类细胞图谱与人体系统数字孪生、单细胞生物信息学分析
主要成果:
Homepage: 张学工-清华大学自动化系
Cornell University
Edward Buckler
主要方向:Plant Breeding and Genetics Section; Quantitative and statistical genetics in maize, cassava, biofuel grasses, and grapes
主要成果:TASSEL: software for association mapping of complex traits in diverse samples(Bioinformatics 2007)
Homepage: https://www.maizegenetics.net/
中山大学
主要方向:开发检测一系列常见和罕见嵌合突变的方法; 探索人类不同发育阶段突变谱的特征和之间的潜在关联; 对嵌合突变进行泛癌检测和分析
主要成果:Accurate detection of mosaic variants in sequencing data without matched controls. (Nat Biotechnol, 2020)
Homepage: https://sls.westlake.edu.cn/Our_Faculty/202104/t20210407_9156.shtml
The University of Texas
Nicholas Navin
主要方向:Single Cell Genomics; Cancer Evolution;development of single cell genome sequencing technologie;study cancer as an evolutionary process in which clones undergo selection and expansion in response to selective pressures
主要成果:Tumour evolution inferred by single-cell sequencing(Nature 2011)
Homepage: https://faculty.mdanderson.org/profiles/nicholas_navin.html
Momiao Xiong
主要方向:Methods for Genome-wide Association Studies,Methods for Functional Genomics Sequencing Studies
主要成果:Genome-wide efficient mixed-model analysis for association studies
Homepage:http://www.xzlab.org/index.html
University of Chicago
龙漫远
主要方向:Evolution of gene essentiality in development;Evolutionary analysis of gene interactions with new genes
主要成果:
Homepage: | Ecology & Evolution
University College London
杨子恒
主要方向:develop statistical models and computer software for population genetic and phylogenetic
主要成果:BP&P: Bayesian analysis of genomic sequence data under the multispecies coalescent model;Phylogenetic analysis by maximum likelihood (PAML)
Homepage: http://abacus.gene.ucl.ac.uk/
复旦大学
主要方向: 发展和运用群体遗传学方法和计算生物学手段,致力于研究人群遗传结构、环境适应和微观进化等方面的科学问题
主要成果:
Homepage: http://pog.fudan.edu.cn/#/home
Carnegie Mellon University
马坚
主要方向:机器学习算法的开发;人类基因组结构和功能与疾病的联系;智能医疗和智能健康;多模态数据整合
主要成果:Infinite Sites Model、InferCARs、Nucleome Browser
Homepage: Carnegie Mellon School of Computer Science
中国农业科学院农业基因组研究所
阮珏
主要方向:基因组组装算法、极低频点突变检测、基因组结构变异检测
主要成果:Pseudo-sanger、wtdbg2、SMARTdenovo
Homepage: 中国农科院基因组所
St. Jude Children's Research Hospital
Jinghui Zhang
主要方向:the development of highly accurate and sensitive computational methods for analyzing large-scale genomic data, especially in the area of detecting and analyzing genetic variations and somatic mutations
主要成果:参与人类基因组计划;开发BLAST(co-author);CREST maps somatic structural variation in cancer genomes with base-pair resolution(Nature Methods 2011);Copy Number Segmentation by Regression Tree in Next Generation Sequencing(Nature Methods 2015)
Homepage: https://www.stjuderesearch.org/site/lab/zhang
上海交通大学
主要方向: 1)high throughput phenotyping by using hyperspectral images and remote sensing images from satellites and drones; 2) the development of innovative statistical methods and computing tools for gene mapping and genomic selection
主要成果: Mixed linear model approach adapted for genome-wide association studies(Nature Genetics, 2010)
Homepage: https://zzlab.net/
中国农业科学院农业基因组研究所
黄三文
主要方向:利用组学大数据开拓植物生物学前沿并推动作物育种变革;发起了“优薯计划”,旨在利用基因组设计育种变革马铃薯的育种和繁殖方式
主要成果:Haplotype-resolved genome analyses of a heterozygous diploid potato. (Nature Genetics, 2020)
Homepage: https://agis.caas.cn/rcpy/gjjrc/gjgccrctszcjh/230423.htm
中科院遗传发育研究所
主要方向:统计遗传学与基因组育种,致力于全基因组关联分析(GWAS)和基因组选择/预测(GS/GP)算法的研究
主要成果:Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-wide Association Studies.(PLoS Genetics, 2016)
Homepage: https://faculty.hzau.edu.cn/liuxiaolei/zh_CN/index.htm
哈尔滨工业大学
王亚东
主要方向: 基因组数据分析算法开发
主要成果: Long-read-based human genomic structural variation detection with cuteSV(Genome Biology, 2020)
Homepage: http://homepage.hit.edu.cn/wangyadong
三:RNA组学
中国科学院大学生物物理所
陈润生(中国生信第一人)
主要方向:胚胎早期发育以及干细胞重编程过程中长非编码RNA以及编码小肽的系统发现和功能机制研究
主要成果:参加人类基因组1%和水稻基因组工作草图的研究;非编码RNA数据库NONCODE;数据库NPInter(非编码RNA与其它生物大分子相互作用)
Homepage: 陈润生-中国科学院大学-UCAS
Stanford University
王永雄 Wing Hung Wong
主要方向:贝叶斯统计、计算生物学;基因调控网络
主要成果:采样算法并应用到贝叶斯推理的方法;开发了微阵列基因芯片表达数据和RNA测序数据分析的创新模型和方法
Homepage: Welcome to the Wong Lab
北京大学
主要方向:动植物中编码和非编码RNA的转录后调控研究 、癌症等疾病中新型RNA分子标识物的发现和机理研究、 机器学习等数据挖掘技术的研究及其在基因组学大数据上的应用
主要成果:
Homepage: 鲁 志-清华大学生命学院
张强锋(导师:张元豪 Howard Y. Chang)
主要方向:使用高通量深度测序的手段来探测RNA二级结构和计算建模,RNA功能模体(motif)等有效预测或发现方法,蛋白-蛋白、RNA-RNA、以及蛋白-RNA相互作用网络
主要成果:VRmol: an Integrative Web-Based Virtual Reality System to Explore Macromolecular Structure (Bioinformatics 2020);RISE: a database of RNA interactome from sequencing experiments(Nucleic Acids Res 2018)
Homepage: 张强锋实验室
University of California San Diego
Gene Yeo
主要方向:manipulating RNA processing in development and disease using induced pluripotent stem cell and murine models; RNA genomics technology and therapeutics development
主要成果:seCLIP
Homepage: Institute for Genomic Medicine
中科院上海营养与健康研究所
杨力
主要方向:构建高效计算生物学新体系,揭示外显子环形RNA在生成加工和功能作用水平的多层次调控新机制;开展大数据整合及计算生物学分析,主要发现RNA单碱基编辑和修饰互作的分子基础,并进一步利用核酸编辑酶构建高效基因组碱基编辑新体系
主要成果:Circular intronic long noncoding RNAs(Molecular cell 2015);Complementary sequence-mediated exon circularization(2014 Cell)
Homepage: 杨力----中国科学院上海营养与健康研究所
The University of Texas MD Anderson Cancer Center
Han Liang(导师:Wen-Hsiung Li)
主要方向:bioinformatics tool development, integrated cancer genomic analysis, RNA regulation/modification, and cancer systems biology
主要成果:Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer;TANRIC: an interactive open platform to explore the function of lncRNAs in cancer
Homepage: https://faculty.mdanderson.org/profiles/liang_han.html
浙江大学
郭国骥
主要方向:单细胞RNA组学
主要成果:Construction of a human cell landscape at single-cell level(Cell 2020);
Mapping the Mouse Cell Atlas by Microwell-Seq(Cell 2018)
Homepage: 郭国骥-浙江大学个人主页
Johns Hopkins University
Steven Salzberg
主要方向: develop software for aligning and assembling genomes representing a wide range of species, transcriptome analysis, and microbiome analysis
主要成果: Bowtie2, TopHat2, Cufflinks, HISAT, StringTie and FLASH
Homepage: https://salzberg-lab.org/
UCLA
Jingyi Jessica Li
主要方向:developing statistical and computational methods,including association measures, high-dimensional variable selection, and classification metrics, scRNA-seq
主要成果:An accurate and robust imputation method scImpute for single-cell RNA-seq data Clipper: p-value-free FDR control on high-throughput data from two conditions
Homepage:http://jsb.ucla.edu/
四:蛋白质组学
Eidgenössische Technische Hochschule Zürich
Ruedi Aebersold
主要方向:One of the pioneers in the field of proteomics, Mass Spectrometry, Systems Biology, Bioinformatics,
主要成果:ICAT & SRM & SWATH
Homepage: Ruedi Aebersold
Max-Planck-Institute of Biochemistry
Matthias Mann
主要方向:Mass Spectrometry, Systems Biology, Bioinformatics, Signal Transduction, Posttranslational modifications, Metabolic diseases, Clinical proteomics, Cancer
主要成果:SILAC & MaxQuant
Homepage: Mann lab
Scripps Research Institute
主要方向:开发前沿蛋白质组学技术,用于高通量地从最少量的临床样本精确定量最多的蛋白质,推动定量蛋白质组学的研究;生物标记的鉴定
主要成果:Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps(2015);Multi-organ proteomic landscape of COVID-19 autopsies(2020)
Homepage: Guomics Laboratory
暨南大学
主要方向:neuroscience and artificial intelligence
主要成果:AlphaFold(通讯)
Homepage: About
John Jumper
主要方向:protein structure prediction
主要成果:AlphaFold(一作)
Homepage: Science Team
The University of Washington
David Baker
主要方向:Deep learning for protein structure refinement and protein design; Designing molecular switches, enzymes, and motors; Designing delivery vehicles for targeted intracellular delivery of biologics
主要成果:Protein Structure Prediction Using Rosetta(Methods in enzymology 2004)
Homepage: https://www.bakerlab.org/
Tel Aviv University
Nir Ben-Tal
主要方向:computational structural biology, including both methods development and applications to selected problems
主要成果:ConSurf、Rate4Site
Homepage: https://en-lifesci.tau.ac.il/profile/bental
Max Planck Institute for Developmental Biology
主要方向:protein function and structure prediction;sequence search and assembly in metagenomics
主要成果:The HHpred interactive server for protein homology detection and structure prediction;
HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment
Homepage: https://www.mpibpc.mpg.de/soeding
University of Texas Southwestern Medical Center
Nick Grishin
主要方向:develop new computational approachesto explore protein sequence-structure
主要成果:PROMALS3D: a tool for multiple protein sequence and structure alignments;AL2CO: calculation of positional conservation in a protein sequence alignment;ECOD;ProSMoS;
Homepage: Grishin Lab: Home Page
University of Michigan Medical School
Yang Zhang
主要方向:develop bioinformatics approaches to predict the three-dimensional structures of proteins from amino acid sequences ;Assemble Protein Structures from Cryo-EM
主要成果:I-TASSER(通讯): a unified platform for automated protein structure and function prediction;TM-align: a protein structure alignment algorithm based on the TM-score;CR-I-TASSER: Assemble Protein Structures from Cryo-EM Density Maps using Deep Convolutional Neural Networks
Homepage: Yang Zhang, Ph.D. | Computational Medicine and Bioinformatics | Michigan Medicine
Memorial Sloan Kettering Cancer Center
Dana Pe'er
主要方向:combines single cell technologies, genomic datasets and machine learning algorithms to address fundamental questions in biomedical science
主要成果:Using Bayesian networks to analyze expression data(Journal of computational biology 2000)
Homepage: https://www.mskcc.org/research/ski/labs/dana-pe-er
山东大学
杨建益
主要方向:Protein structure and function prediction;Protein structure alignment;Protein-ligand binding site prediciton
主要成果:I-TASSER(一作)
Homepage: Yang Lab
King Abdullah University of Science and Technology
高欣
主要方向:1) developing theory and methodology in the fields of machine learning and algorithms; and 2) solving key open problems in biological and medical fields through building computational models, developing machine-learning techniques, and designing effective and efficient algorithms
主要成果:DEEPre: sequence-based enzyme EC number prediction by deep learning(Bioinformatics 2018)
Homepage: https://sfb.kaust.edu.sa/Pages/Home.aspx
Chinese University of Hong Kong
李煜(导师:高欣)
主要方向:working at the intersection between machine learning, healthcare and bioinformatics, developing new machine learning methods to resolve the computational problems in biology and healthcare, especially the structured learning problems
主要成果:DEEPre: sequence-based enzyme EC number prediction by deep learning(Bioinformatics 2018)
Homepage: https://liyu95.com/
西湖大学
The Center for Brains, Minds and Machines (CBMM) of MIT
Tomaso Poggio
主要方向:Brain Imaging;Cellular & Molecular Neuroscience;Cognitive Neuroscience;ComputationalNeuroscience
主要成果:Networks for approximation and learning;Face recognition: Features versus templates;
Hierarchical models of object recognition in cortex
Homepage: https://cbmm.mit.edu/about/people/poggio
复旦大学
赵兴明
主要方向:开发新的计算方法用于分子网络的构建和分析;脑核磁共振图像的处理;脑功能神经网络的构建和处理;疾病相关分子通路的识别;药物靶蛋白预测和药物重定位
主要成果:PhosD: inferring kinase–substrate interactions based on protein domains (Bioinformatics 2017);Prediction of drug combinations by integrating molecular and pharmacological data(PLoS computational biology 2011)
Homepage: http://comp-sysbio.org/
New York University
主要方向:Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival;Pathways Understanding;Study of Protein-Protein Interactions Using Probabilistic Graphical Models;Computer vision;Bayesian Network;Robotics
主要成果:Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network;Continuous Time Bayesian Networks;Multi-Class Segmentation with Relative Location Prior
Homepage: Daphne Koller's Research Group
Weizmann Institute of Science
Nir Freidman
主要方向:combine advanced experimental and mathematical approaches to study intercellular communication;T cell activation and differentiation;Characterizing T cell receptor repertoires using high throughput sequencing (TCR-seq)
主要成果:Gaussian Process Networks
Homepage: https://www.weizmann.ac.il/immunology/NirFriedman/
北京大学
韩敬东
主要方向:开发数据整合和网络分析的计算方法;衰老的系统生物学研究
主要成果:Evidence for dynamically organized modularity in the yeast protein–protein interaction network;Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq
Homepage: 韩敬东-北京大学前沿交叉学科研究院
The Chinese University of Hong Kong
Kevin Y Yip
主要方向:computational biology and bioinformatics (CBB);Whole-genome identification of sequence elements;Computational modeling of gene regulation
主要成果:参与ENCODE;Harp: A practical projected clustering algorithm
Homepage: Home of Kevin Yip
University of Pennsylvania
Nancy Ruonan Zhang
主要方向:Statistics, Computer Science, and Biology, seeking new ways to think about and work with genomic data
主要成果:参与ENCODE;Graph-based change-point detection;A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data;SAVER: gene expression recovery for single-cell RNA sequencing
Homepage: Department of Statistics and Data Science
Kai Tan
主要方向:using genomics and systems biology approaches to understand the gene regulatory factors underlying cellular processes
主要成果:Global view of enhancer–promoter interactome in human cells;A comparative genomics approach to prediction of new members of regulons
Homepage: https://www.med.upenn.edu/apps/faculty/index.php/g275/p8885111
Mingyao Li
主要方向:statistical genetics and genomics;use statistical and machine learning approaches to understand cellular heterogeneity ;characterize gene expression diversity across cell types;to study the patterns of cell state transition and crosstalk of various cells using data generated from single-cell transcriptomics studies
主要成果:MetaDiff;PennSeq
Homepage: https://www.med.upenn.edu/apps/faculty/index.php/g275/p8122973
UT Southwestern Medical Center
Jian Zhou
主要方向:Decoding Genomic Sequence;Evolution of Regulatory Genome;Data Science and AI Methods
主要成果:Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk;Predicting effects of noncoding variants with deep learning–based sequence model
Homepage: Jian Zhou - Home
Johns Hopkins University
Jean Fan
主要方向:develop methods for analyzing single-cell spatially resolved transcriptomic sequencing and imaging data;cellular heterogeneity on cancer pathogenesis and prognosis
主要成果:VeloViz: RNA-velocity informed embeddings for visualizing cellular trajectories;Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis;Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists
Homepage: Jean Fan - Johns Hopkins Biomedical Engineering
University of Michigan
Lana Garmire
主要方向:Integrative omics/clinic data analysis;Develop computational methods to analyze high-throughput data from next-generation sequencing
主要成果:Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data;Deep learning–based multi-omics integration robustly predicts survival in liver cancer;
Homepage: Lana Garmire, Ph.D. | Computational Medicine and Bioinformatics | Michigan Medicine
Univeristy of Hong Kong
Yuanhua Huang
主要方向:developing statistical machine learning methods and computational algorithms for analysing biomedical data, particularly single-cell genomic data
主要成果:BRIE: transcriptome-wide splicing quantification in single cells;Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference
Homepage: Huang Lab @ HKU Home