金桔
金币
威望
贡献
回帖0
精华
在线时间 小时
|
很多人将微流控芯片、生物芯片、类器官芯片分不清,以下做以说明:
——生物芯片(biochip或bioarray)是根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对DNA、RNA、多肽、蛋白质以及其他生物成分的高通量快速检测。狭义的生物芯片概念是指通过不同方法将生物分子(寡核苷酸、cDNA、genomic DNA、多肽、抗体、抗原等)固着于硅片、玻璃片(珠)、塑料片(珠)、凝胶、尼龙膜等固相递质上形成的生物分子点阵。因此生物芯片技术又称微陈列(microarray)技术。
——微流控芯片是指在一块几平方厘米的芯片上构建化学或生物学实验室,它可以把所涉及的化学和生物学领域中的样品制备、反应、检测,细胞培养、分选、裂解等基本操作单元集成到这块很小的芯片上,用于完成不同的生物学和化学反应过程,并通过由微通道形成的网络,使微流体贯穿整个系统,用以实现常规化学或生物学实验室的各种功能,在物理、化学和生物分析、病理诊断和环境监控等领域中有广阔的应用前景。
——器官芯片是将微流控芯片与类器官这两项技术结合,形成一种通过微芯片制造方法制造的微流体细胞培养设备,利用芯片来构建和模拟人体组织微环境,形成类似于人体微生理系统。类器官芯片含有某个器官特有的多种细胞类型,与人类器官拥有高度相似的组织学和基因型特征,并部分重现该器官的特有生理功能。该设备包含连续灌注腔室,具有多细胞层结构、组织界面、物理化学微环境以及人体血管循环。也可认为是可模拟和重构人体器官生理功能的细胞培养微工程设备。器官芯片应用广泛,在高通量药物筛选、药物吸收代谢、药物开发、人体循环系统、药物毒理学、人工仿生微环境、细胞间互作以及细胞与细胞外基质互作、新型体外培养平台等方面都有所发展。
类器官是在体外用3D培养技术对干细胞或器官祖细胞进行诱导分化形成的在结构和功能上都类似目标器官或组织的三维细胞复合体,其具有稳定的表型和遗传学特征,能够在体外长期培养。类器官可以在很大程度模拟目标组织或器官的遗传特征和表观特征,在器官发育、精准医疗、再生医学、药物筛选、基因编辑、疾病建模等领域都有广泛的应用前景。 区别: 其实微流控芯片 (Microfluidic Chip) 是以微量流体的精确控制微核心技术,而生物芯片 (Biochip) 是以静态的亲和反应配对为核心技术,又被称之为微阵列芯片 (Microarry Chip)。从原理、应用及发展目标上看,它们都是芯片实验室,但它们各有自己的特点,不能相互混淆。它们分属于不同的学科体系以及技术领域,且各自经历了自身特有的发展历程。生物芯片技术始发于上个世纪80年代,起初的激素是将寡核苷酸固定在载体上,然后通过核酸杂交技术来检测未知序列,后来随着人类基因组计划的兴起得到了迅速发展。目前,生物芯片不但包含发展之初的核酸芯片还有蛋白质芯片,已发展成为一门工艺及市场化都相当成熟的技术。而微流控芯片的发展始于上个世纪90年代,是在分析化学领域,而不是在基因工程领域里首先发展开来的。它是将分析化学、微机电加工、计算机科学等结合起来,主要应用于生命科学,在芯片上实现实验室的全部功能,具有广阔的适用性和美好的应用前景。生物芯片和微流控芯片两者之间的关系不是相互包含而是相互补充,相互融合,都为了实现芯片实验室的功能。
而类器官和类器官芯片作为一个新兴的领域,旨在使器官的体外培养变得更易于操作和可控,从而尽可能全面地反映人体内部复杂的内环境。如果说类器官更偏向生物学,利用细胞因子诱导成体干细胞自组装形成人体微器官,那么器官芯片更偏向于生物医学工程,即利用微流控技术控制流体流动,结合细胞与细胞相互作用、基质特性以及生物化学和生物力学特性,在芯片上构建三维的人体器官生理微系统。类器官芯片以微型结构为特征,具有高通量和高灵敏度的特点,可集成类器官的分选、培养、观察、刺激诱导、检测分析等一系列实验过程于一体,应用于发育或疾病模型的构建、药物研发、免疫反应治疗、微生物感染等多个生物领域中,使临床的治疗方案更具有预测性并大大提高了实验的效率。
原文地址:https://zhuanlan.zhihu.com/p/575465944 |
|