金桔
金币
威望
贡献
回帖0
精华
在线时间 小时
|
以下回答的内容尝试从近两年的故障诊断相关文章中寻找未来研究方向,欢迎同行交流!
2023年
- Causal-Trivial Attention Graph Neural Network for Fault Diagnosis of Complex Industrial Processes
- 关键词:因果学习;图网络
- 链接:https://ieeexplore.ieee.org/document/10146475
- 摘要:在现代工业系统中,组件之间有着复杂的相互作用,这使得识别工业系统的运行状况成为一项具有挑战性的任务。考虑到一个工业系统,嵌入式组件和它们的相互作用可以分别表示为图中的节点和边。因此,图表示算法是工业系统故障诊断的有力工具。作为最常用的图表示算法之一,图神经网络(GNN)主要遵循 "学习参加 "的规律。图神经网络提取训练数据的特征,学习特征和标签之间的统计相关性,从而使出席图偏向于访问非因果特征,作为预测的捷径。这种捷径特征是不稳定的,取决于训练数据集中的数据分布特征,这降低了分类器的泛化能力。通过对图表示的GNN建模进行因果分析,结果表明,捷径特征作为因果特征和预测之间的混杂因素,导致分类器学习到错误的关联性。因此,为了发现因果关系模式,削弱捷径特征的混杂影响,我们提出了因果-捷径图神经网络(CTA-GNN)策略。首先,通过估计软掩码给出节点和边缘的表示。第二,通过拆分,从图中获得因果特征和捷径特征。第三,对因果理论的后门调整进行参数化,将每个因果特征与各种捷径特征相结合。最后,在三相流量设施(TFF)数据集上的比较实验说明了所提方法的有效性。
2022年
- W. Xu, Z. Zhou, T. Li, C. Sun, X. Chen and R. Yan, "Physics-Constraint Variational Neural Network for Wear State Assessment of External Gear Pump,"
- 关键词:物理约束;故障机理;可解释性
- 链接:https://ieeexplore.ieee.org/document/9927309
- 亮点:基于故障机理物理约束的可解释故障诊断模型。
- Y. Han, W. Qi, N. Ding and Z. Geng, "Short-Time Wavelet Entropy Integrating Improved LSTM for Fault Diagnosis of Modular Multilevel Converter,"
- 关键词:短时小波熵集成的LSTM;SVM;少样本
- 链接:https://ieeexplore.ieee.org/document/9313022
- 亮点:将长短期记忆网络(LSTM)和支持向量机(SVM)相结合的短时小波熵故障诊断方法。
- T. Zhang, J. Chen, S. He and Z. Zhou, "Prior Knowledge-Augmented Self-Supervised Feature Learning for Few-shot Intelligent Fault Diagnosis of Machines,"
- 关键词:先验知识;自监督学习;小样本数据
- 链接:https://ieeexplore.ieee.org/document/9677916
- 亮点:以自监督学习的方式将先验知识融入诊断模型中。
- Rujie Hou, Jinglong Chen, Yong Feng, Shen Liu, Shuilong He, Zitong Zhou, "Contrastive-weighted self-supervised model for long-tailed data classification with vision transformer augmented"
- 关键词:对比学习;长尾数据;Transformer
- 链接:https://www.sciencedirect.com/science/article/pii/S0888327022003314
- 亮点:基于对比学习的Transformer用于长尾数据下的故障识别问题。
- W. Zhang and X. Li, "Federated Transfer Learning for Intelligent Fault Diagnostics Using Deep Adversarial Networks With Data Privacy,"
- 关键词:联邦学习;数据隐私
- 链接:https://ieeexplore.ieee.org/document/9376674
- 亮点:以联邦学习的方式训练诊断模型以保护用于数据隐私。
- W. Qian, S. Li and J. Lu, "Deep sparse topology network for robust bearing fault diagnosis by maximizing prior knowledge functions,"
- 关键词:先验知识函数
- 链接:https://ieeexplore.ieee.org/document/9706352
- 亮点:基于健康状态先验知识最大化的故障诊断。
- R. Wang, Z. Chen, S. Zhang and W. Li, "Dual-Attention Generative Adversarial Networks for Fault Diagnosis Under the Class-Imbalanced Conditions,"
- 关键词:注意力机制;生成对抗网络
- 链接:https://ieeexplore.ieee.org/document/9627919
- 亮点:故障数据生成+注意力机制故障特征增强。
2021年
- Y. Hu, R. Liu, X. Li, D. Chen and Q. Hu, "Task-Sequencing Meta Learning for Intelligent Few-Shot Fault Diagnosis with Limited Data,"
- 关键词:元学习(Meta learning);小样本数据
- 链接:https://ieeexplore.ieee.org/document/9537307
- 亮点:元学习网络用于小样本数据下的智能诊断。
- X. Zhao, M. Jia and Z. Liu, "Semisupervised Graph Convolution Deep Belief Network for Fault Diagnosis of Electormechanical System With Limited Labeled Data,"
- 关键词:图卷积网络;小样本数据
- 链接:https://ieeexplore.ieee.org/document/9244619
- 亮点:图卷积网络用于小样本数据下的智能诊断。
- H. Shao, M. Xia, G. Han, Y. Zhang and J. Wan, "Intelligent Fault Diagnosis of Rotor-Bearing System Under Varying Working Conditions With Modified Transfer Convolutional Neural Network and Thermal Images,"
- 关键词:红外热图像;变工况;迁移学习
- 链接:https://ieeexplore.ieee.org/document/9130129
- 亮点:基于红外热图像的健康状态识别。
- J. Feng, Y. Yao, S. Lu and Y. Liu, "Domain Knowledge-Based Deep-Broad Learning Framework for Fault Diagnosis,"
- 关键词:小样本数据,同源任务 | 领域知识(Domain knowledge),宽度学习
- 链接:https://ieeexplore.ieee.org/document/9047140
- 亮点:领域知识减少模型学习过程中标记样本的使用。
- T. Li, Z. Zhao, C. Sun, R. Yan and X. Chen, "Multi-receptive Field Graph Convolutional Networks for Machine Fault Diagnosis,"
- 关键词:graph convolutional networks 图卷积神经网络
- 链接:https://ieeexplore.ieee.org/document/9280401
- 亮点:图卷积神经网络用于智能故障诊断。
- M. A. Jarwar, S. A. Khowaja, K. Dev, M. Adhikari and S. Hakak, "NEAT: A Resilient Deep Representational Learning for Fault Detection using Acoustic Signals in IIoT Environment,"
- 关键词:物联网iIOT 边缘设备(edge devices)
- 链接:https://ieeexplore.ieee.org/document/9527336
- 亮点:对物联网中边缘设备的故障诊断。
- S. Fan, X. Zhang and Z. Song, "Imbalanced Sample Selection with Deep Reinforcement Learning for Fault Diagnosis,"
- 关键词:不平衡数据 | 深度强化学习
- 链接:https://ieeexplore.ieee.org/document/9497679
- 亮点:使用深度强化学习选择故障样本进行模型训练。
- Kaiyu Zhang, Jinglong Chen, Shuilong He, Enyong Xu, Fudong Li, Zitong Zho. Differentiable neural architecture search augmented with pruning and multi-objective optimization for time-efficient intelligent fault diagnosis of machinery.
- 关键词:神经架构搜索 NAS
- 链接:https://www.sciencedirect.com/science/article/pii/S0888327021001680
- 亮点:使用神经架构搜索寻找诊断模型的结构参数。
2020年
- W. Li, Z. Chen and G. He, "A novel weighted adversarial transfer network for partial domain fault diagnosis of machinery,"
- 关键词:Cross-domain dataset | 跨域数据集; Adversarial learning; Transfer learning;
- 链接:https://ieeexplore.ieee.org/document/9093960
- Q. Shi and H. Zhang, "Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets,"
- 关键词:Unbalanced dataset | 不平衡数据; SVM
- 链接:https://ieeexplore.ieee.org/document/9097402
- L. Feng and C. Zhao, "Fault Description Based Attribute Transfer for Zero-Sample Industrial Fault Diagnosis,"
- 关键词:Zero fault sample | 零故障样本; zero-shot learning; fault description;
- 链接:https://ieeexplore.ieee.org/document/9072621
- 亮点:运用故障属性描述解决零样本故障诊断问题。
- T. Zhang, J. Chen, F. Li, T. Pan and S. He, "A Small Sample Focused Intelligent Fault Diagnosis Scheme of Machines via Multi-modules Learning with Gradient Penalized Generative Adversarial Networks,"
- 关键词:Small sample | 小样本数据; Data augmentation; GAN;
- 链接:https://ieeexplore.ieee.org/document/9219137
- 亮点:基于生成对抗网络的故障数据增强。
- Y. Wang, J. Yan, Q. Sun, Q. Jiang and Y. Zhou, "Bearing Intelligent Fault Diagnosis in the Industrial Internet of Things Context: A Lightweight Convolutional Neural Network,"
- 关键词:Lightweight CNN | 轻量化神经网络;
- 链接:https://ieeexplore.ieee.org/document/9088980
- 亮点:从应用角度出发的轻量化神经网络。
- H. Lee, H. Jeong, G. Koo, J. Ban and S. W. Kim, "Attention Recurrent Neural Network-Based Severity Estimation Method for Interturn Short-Circuit Fault in Permanent Magnet Synchronous Machines,"
- 关键词:Attention mechanism | 注意力机制;
- 链接:https://ieeexplore.ieee.org/document/9032381
- 亮点:注意力机制用于敏感故障特征学习。
- H. Zheng, R. Wang, Y. Yang, Y. Li and M. Xu, "Intelligent Fault Identification Based on Multisource Domain Generalization Towards Actual Diagnosis Scenario,"
- 关键词:Multimodal data | 多模态数据;Domain Generalization;
- 链接:https://ieeexplore.ieee.org/document/8643085
- 亮点:多模态数据的运用。
|
|