那么如果题主问的是光之间能否转化呢?这在非线性光学领域极其常见。那么我来提及一下我的研究领域方向——和频振动光谱。
和频光谱(Sum Frequency Generation,SFG)技术是一种相干的二阶非线性光学过程,为加州大学伯克利分校的华人教授沈元壤于1987年首次报道。当两束脉冲激光同时照射到同一样品时,会产生频率等于两束入射光之和的光信号,这就是和频光谱信号。而当其中一束光为红外光时,称作和频振动光谱(Vibrational Sum Frequency Generation, VSFG)。由于相干的二阶非线性光学过程的特殊的选择性,在electric-dipole (ED) approximation下,只有具有非中心对称才有信号。因此,和频振动光谱可以给出处于非对称中心环境的化学键振动光谱[3]。
比如如果入射的两束光波长分别为800 nm和4000 nm,那么最终的SFG信号为667 nm。所以由此可见,具有非中心对称的分子,可以将长波长的光转化成短波长的光。
在我的研究中,我搭建了和频振动光谱显微镜以及世界上第一台瞬态和频振动光谱显微镜,并用它们研究了一个分子自组装体系——SDS@2β-CD (十二烷基硫酸钠和β-环糊精)[4][5]。
在和频振动光谱显微镜中,我们发现不同区域样品的光谱信号,定性来说是类似的,但是定量来说却有些不同(qualitatively similar but quantitatively different)——主要是在OH区域的峰强比不同——这应该是由于不同区域的hydration level不同所导致的。
我们还发现SDS@2β-CD样品具有各向异性(anisotropy,因为有SSS信号),而SDS@2γ-CD却没有。这是因为分子对称性与自组装对称性的叠加所导致的——C7与C2在一起会导致最终是C1——这也说明该自组装中的分子排布非常规整。另外,其中的水分子也具有与自组装类似的对称性,这说明自组装结构通过分子间作用力(氢键)使得水分子也服从其对称性——这也是为什么在此样品中水分子也有这么强的信号(在相同的条件下,液态水几乎没有信号)。
最近,Jonathan Martin 的一篇学术报导吸引了我的注意,当鸭嘴兽的毛皮在被紫外线的灯光照到时,会发出蓝绿色的荧光色,结果我再深入去了解的结果,夜行性动物像是北美飞鼠也有相同的现象。这种被称为「生物荧光,biofluorescence」的现象是指生物体吸收了特定波长的光线,再发出另一个波长的光线,一般常见的生物荧光色包含了绿色、红色、橘色、蓝色。但关于生物荧光的现象很常出现在真菌、花朵、昆虫、鱼、两栖类、爬虫类、鸟身上,目前已知在哺乳类动物上相对并不常见。