金桔
金币
威望
贡献
回帖0
精华
在线时间 小时
|
首先表明观点:我认为,自动化诊断是未来趋势,但现在不成熟,有很大的发展空间。
最先要指出的是,大数据诊断,并非单纯的收集数据得出统计结论,而是有一定的人工智能算法在其中起推断作用。其中简单有效,而且最符合人的判断逻辑的算法叫做贝叶斯网络,在足够多的数据(这点很难就是了)的前提下,完全可以比任何一个个人能做出的判断更加准确。在数据不足的情况下,也有可以和不少个人媲美的推断能力,至少在少见病的诊断上,其准确率是远远高于人的。国外有这样的诊断辅助产品,就是针对少见病诊断市场。国内目前完全空白。
我们先来看看现在的临床诊疗。
1、现代医学是循证医学(EBM)。也就是临床实践都是以基础科学研究和大规模的临床实验结果作为支持的。这些结论,都是大量的数据采集和分析的结果。
2、现代医学的临床实践仍然处于经验为主的阶段,EBM的结论,并不能直接完全覆盖实际病人身上发生的具体情况。基于EBM的基础部分的结论,结合实践经验,仍然是现阶段临床实践最重要的方式。
3、大量未得到良好教育和缺乏检查受手段的医务工作者,仍然是目前医疗的主要力量,尽管国内有最好教育的医生和最好检查手段的三甲医院,依然人满为患。
4、全科医生的作用被严重低估,而大量专科医生扮演起了全科医生的角色,化了很大的精力在处理一些“小病”上。
总结一下就是:EBM指导的部分有局限,EBM+经验医疗是主流,条件差,水平低,专业不对口的医生是主流。
大数据可以解决什么问题呢:
1、扩大EBM的适用范围。如果可以精确地采集数据,EBM在医疗中的比重将更快地上升,总体医疗质量提高。
2、个人经验无关紧要,大数据将使得个人经验更多地转变成全人类经验,误诊、漏诊将大大减少,从而提高整体医疗质量。
3、医院分工、医生分工将更加明确:大医院解决复杂病情,中医院解决一般病情,小医院解决慢性病于预防接种保健。因为医生的诊断已经不依赖个人经验,从而对普通疾病和罕见疾病的准确率可以有保证;只有病情复杂,治疗手段复杂,需要建立MDT(多学科团队)的病人,才需要大医院和专家的处理。
4、所有医生的工作负担均会一定程度上的减轻,从而带给病人的医疗服务质量会有提升。
而现阶段大数据做不到的事情:
1、精确地、自动化地数据采集。毫无疑问,同一个样品去不同医院的实验室同时做化验,结果都会不同,这已经是自动化程度非常高的了(这个问题其实可以通过实验室间校准解决)。跟别提那些可穿戴设备了,可以达到临床参考级别的设备实在是太少。而医疗数据的维度也特别高,如何让大数据去自动处理病人的CT资料?而病史,体检等描述性资料,更离不开临床工作者的采集。总之,数据采集方面,完全没办法离开一线临床工作者。
2、To cure sometimes,to relieve often,to comfort alway. ——E. L. Trudeau。真正能治愈的疾病实在是少得可怜(其实大多也不是治好的,只是身体自己好的),更多的时候,医生做的只是在减轻痛苦,抚慰心灵。这部分工作,大数据能帮上的忙就十分有限度,大数据最多只是减轻医生其他方面的工作,从而换取更多的精力到人文关怀上。
真正可以靠大数据看病了,那得是人工智能发展到可以超越大部分人类的时候了。但并不意味着大数据在现阶段完全没有价值。这部分的价值其实是非常巨大的,只是要找到有能力去做的人,同时又能找到买单的人很困难。就像Google研究无人驾驶汽车一样,未来一定会大部分时候完全无人驾驶,而现在的无人驾驶技术依然有巨大的技术价值(比如说可以避免很多高速公路上的车祸)。
P.S. 丁香园还没打算做这一块是相当可惜的(不然我就加入他们算了),毕竟国内有很多更容易解决,更重要的问题等他们去做。
欢迎大家来讨论。 |
|