立即注册找回密码

QQ登录

只需一步,快速开始

微信登录

微信扫一扫,快速登录

手机动态码快速登录

手机号快速注册登录

搜索

图文播报

查看: 871|回复: 5

[分享] 在振动信号处理中怎么理解时间尺度,根据不同时间尺度来分离信号?

[复制链接]
发表于 2024-9-29 11:15 | 显示全部楼层 |阅读模式
回复

使用道具 举报

发表于 2024-9-29 11:16 | 显示全部楼层
时间尺度和频率反比,不同时间尺度就是按不同频率分离信号?
回复 支持 反对

使用道具 举报

发表于 2024-9-29 11:16 | 显示全部楼层
理解时间尺度?应该是时域波形吧?收集到了振动时域就可以分析了。记录下振动信号的波形,然后进行FFT(快速傅里叶变换)分析,得出它的频谱。对于复杂的振动,一般很难根据波形给出其时域的精确解析式。
回复 支持 反对

使用道具 举报

发表于 2024-9-29 11:16 | 显示全部楼层
你说的应该是所谓的”多分辨分析“吧
人的眼睛观察物体时,如果距离物体比较远,即尺度较大,则视野宽、分辨能力低,只能观察事物的概貌而看不清局部细节;若距离物体较近,即尺度较小,那么视野就窄而分辨能力高,可以观察到事物的局部细节却无法概览全貌。因此,如果既要知道物体的整体轮廓又要看清其局部细节,就必须选择不同的距离对物体进行观察。和人类视觉机理一样,人们对事物、现象或过程的认识会因尺度选择的不同而得出不同的结论,这些结论有些可能反映了事物的本质,有些可能部分地反映,有些甚至是错误的认识。显然,仅使用单一尺度通常只能对事物进行片面的认识,结果不是只见“树木”不见“森林”,就是只见“森林”不见“树木”,很难对事物有全面、清楚的认识。只有采用不同的尺度,小尺度上看细节,大尺度上看整体,多种尺度相结合才能既见“树木”又见“森林”。另一方面,在自然界和工程实践中,许多现象或过程都具有多尺度特征或多尺度效应,同时,人们对现象或过程的观察及测量往往也是在不同尺度上进行的。
即:由粗到细或由细到粗地在分辨率上对事物进行分析称为多分辨分析,又称多尺度分析。多分辨分析最早用于计算机视觉研究领域,研究者们在划分图像的边缘和纹理时发现边缘和纹理的界限依赖于观察与分析的尺度,这激发了他们在不同的尺度下检测图像的峰变点。1987年,Mallat将计算机视觉领域内多尺度分析的思想引入到小波分析中研究小波函数的构造及信号按小波变换的分解和重构,提出了小波多分辨分析的概念,统一了此前各种具体小波的构造方法。Mallat的工作不仅使小波分析理论取得了里程碑式的发展,同时也使多尺度分析在众多领域取得了许多重要的理论和应用成果。小波分析已经成为应用最广泛的多分辨率分析。
实际上,信号通常由多个具有物理意义的分量组成,在很多时候,为了更容易的研究信号,我们希望在与原始数据相同的时间尺度上单独研究这些分量中的一个或多个,理想情况下,我们希望这些经MRA分解到的多个分量在物理上是有意义的,可容易解释的。多分辨率分析MRA通常与小波或小波包相关联,但诸如经验模态分解EMD,变分模态分解VMD等模态分解方法也可以构成MRA。
先给一个简单的合成信号,信号以1000Hz的频率采样1秒钟。
Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
comp1 = cos(2*pi*200*t).*(t>0.7);
comp2 = cos(2*pi*60*t).*(t>=0.1 & t<0.3);
trend = sin(2*pi*1/2*t);
rng default
wgnNoise = 0.4*randn(size(t));
x = comp1+comp2+trend+wgnNoise;
plot(t,x)
xlabel('Seconds')
ylabel('Amplitude')
title('Synthetic Signal')

该信号由3个主要分量组成:频率为 60Hz的时间局部振荡分量、频率为 200 Hz的时间局部振荡分量和趋势项分量。趋势项分量为正弦曲线,频率为0.5Hz。60Hz的振荡分量发生在 0.1到 0.3 秒之间,而 200Hz的振荡分量发生在 0.7 到 1 秒之间。
但这些分量从时域波形中无法分辨,因此进行频域变换。
xdft = fft(x);
N = numel(x);
xdft = xdft(1:numel(xdft)/2+1);
freq = 0:Fs/N:Fs/2;
plot(freq,20*log10(abs(xdft)))
xlabel('Cycles/second')
ylabel('dB')
grid on

从频率中可以更容易地辨别振荡分量的频率,但时间局部性信号却丢失。为了同时定位时间和频率信息,使用连续小波变换进行分析。


从CWT时频谱图中可以看出60Hz和200Hz分量的时间范围,但没有发现趋势项分量。为了分离出信号的分量并单独进行分析,接下来使用多分辨分析,直接在时域中进行相关操作。
多分辨分析通过将信号分成不同分辨率的分量进而缩小分析范围,而提取不同分辨率的信号分量相当于分解数据在不同时间尺度上的变化,或等效地在不同频带上进行分析。首先,采用离散小波变换的变体最大重叠离散小波变换对信号进行多分辨分析,分解层数为8。关于最大重叠离散小波变换的相关内容,请查看如下文献。


最大重叠离散小波变换的8层多分辨分析分解如下:


如果从上向下看,会看到所分解的分量变得越来越平滑,即分量频率越来越低。回想一下,原始信号包含3个主要分量,一个 200 Hz 的高频振荡成分、一个 60 Hz 的低频振荡成分和一个趋势成分,它们都被加性噪声破坏了。
从D2 图中可以看出时间局部化的高频分量被分解出来,而下面的两个图包含较低频率的振荡分量,这是多分辨率分析的一个重要方面,最后S8子图中包含了趋势项分量。
除了小波多分辨分析,经验模态分解 (EMD) 是一种所谓的数据自适应多分辨技术。 EMD 在不使用固定基函数的情况下递归地从数据中提取不同的分辨率成分,关于EMD相关文献浩如烟海,不做赘述了。EMD的多分辨分析分解如下所示:


虽然MRA分解分量的数目不同,但 EMD MRA和小波 MRA会产生相似的信号波形,在 EMD MRA分解中,高频振荡成分位于第1个本征模态函数中 (IMF1),低频振荡成分主要位于IMF2和IMF3中,IMF6 中的趋势项分量与小波技术提取的趋势分量非常相似。
自适应多分辨分析的另一种技术是变分模态分解 (VMD),VMD 从信号中提取固有模式函数或振荡模式,并不使用固定基函数进行分析。EMD在时域上递归,以逐步提取低频IMF分量,而VMD 首先识别频域中的信号峰值并同时提取所有模式,相关文献如下:
Dragomiretskiy, Konstantin, and Dominique Zosso. “Variational Mode Decomposition.” IEEE Transactions on Signal Processing 62, no. 3 (February 2014): 531–44. https://doi.org/10.1109/TSP.2013.2288675.
VMD的多分辨分析分解如下所示:


由上图可知,与小波和EMD类似,VMD将3个分量基本分离了出来。
还有一种数据自适应多分辨分析技术:经验小波变换 (EWT) ,EWT根据分析信号的频率构造 Meye小波进而进行自适应小波,之前写过EWT相关的内容:
经验小波变换在信号处理及轴承故障诊断中的应用 - 哥廷根数学学派的文章 - 知乎https://zhuanlan.zhihu.com/p/53
EWT的多分辨分析分解如下所示:

回复 支持 反对

使用道具 举报

发表于 2024-9-29 11:17 | 显示全部楼层
理解为频率?
回复 支持 反对

使用道具 举报

发表于 2024-9-29 11:17 | 显示全部楼层
你先考虑,分解信号的目的是啥,不要想着怎么分解,在我看来,提这些分解需求的,大多是没有经历现场的
回复 支持 反对

使用道具 举报

发表回复

您需要登录后才可以回帖 登录 | 立即注册 微信登录 手机动态码快速登录

本版积分规则

关闭

官方推荐 上一条 /3 下一条

快速回复 返回列表 客服中心 搜索 官方QQ群 洽谈合作
快速回复返回顶部 返回列表