一代测序技术,也被称为Sanger测序,其实是由一个叫Sanger的人发明的一种测序方式。其利用了双脱氧核苷酸会终止PCR的原理。一代测序的特点:速度快,但是一次只能测一条单一的序列,且最长也就能测1000-1500bp。所以被广泛应用在单序列测序上。简单概括就是,一代测序只能测一条长度在1000bp左右的序列。
二代测序技术,也被称为高通量测序技术。它解决了一代测序只能测一条序列的缺陷。二代测序又称其为高通量测序,是因为它一次能够同时测很多的序列。通过物理或是化学的方式将DNA随机打断成无数的小片段(250-300bp),之后通过建库(这里就不深入建库的原理了)富集了这些DNA片段。将建完的库放入测序仪中测序,测序仪中有着可以让DNA片段附着的区域,每一个片段都有独立的附着区域,这样测序仪可以一次检测所有附着的DNA序列信息。最后通过生物信息学分析将小片段拼接成长片段。 二代测序特点:一次能够测大量的序列,但是片段被限制在了250-300bp,由于是通过序列的重叠区域进行拼接,所以有些序列可能被测了好多次。由于建库中利用了PCR富集序列,因此有一些量少的序列可能无法被大量扩增,造成一些信息的丢失,且PCR中有概率会引入错配碱基。所以三代测序就这样诞生了。三代测序技术依赖DNA聚合酶的活性,且成本很高,目前的错误率在15%-40%,极大地高于二代测序技术的错误率不过好在三代的错误是完全随机发生的,可以靠覆盖度来纠错(但这要增加测序成本)。 三代测序的应用领域在哪些方向呢?
|