O’Farrell B. Evolution in lateral flow–based immunoassay systems. Lat Flow Immuno. Published online October 31, 2008:1-33. doi:10.1007/978-1-59745-240-3_1
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Rivas M, Blanco-López MC. Magnetic lateral flow immunoassays. Diagnostics (Basel). 2020;10(5):288. doi:10.3390/diagnostics10050288
Faulstich K, Gruler R, Eberhard M, Lentzsch D, Haberstroh K. Handheld and portable reader devices for lateral flow immunoassays. In: Wong R, Tse H, eds. Lateral Flow Immunoassay. Humana Press; 2009:1-27. doi:10.1007/978-1-59745-240-3_9
Zangheri M, Cevenini L, Anfossi L, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 2015;64:63-68. doi:10.1016/j.bios.2014.08.048
Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678-2686. doi:10.1039/C2LC40235A
You DJ, Park TS, Yoon JY. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180-185. doi:10.1016/j.bios.2012.07.014
Park J. Lateral flow immunoassay reader technologies for quantitative point-of-care testing. Sensors. 2022;22(19):7398. doi:10.3390/s22197398
Anfossi L, Di Nardo F, Cavalera S, Giovannoli C, Baggiani C. Multiplex lateral flow immunoassay: An overview of strategies towards high-throughput point-of-need testing. Biosensors (Basel). 2018;9(1):2. doi:10.3390/bios9010002
He F, Lv X, Li X, Yao M, Li K, Deng Y. Fluorescent microspheres lateral flow assay integrated with smartphone-based reader for multiple microRNAs detection. Microchem. J. 2022;179:107551. doi:10.1016/j.microc.2022.107551
Bock S, Kim HM, Kim J, et al. Lateral flow immunoassay with quantum-dot-embedded silica nanoparticles for prostate-specific antigen detection. Nanomaterials (Basel). 2021;12(1):33. doi:10.3390/nano12010033
Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569-582. doi:10.1007/s00216-008-2287-2
Leuvering JHW, Goverde BC, Thal PJHM, Schuurs AHWM. A homogeneous sol particle immunoassay for human chorionic gonadotrophin using monoclonal antibodies. J Immunol. Methods. 1983;60(1):9-23. doi:10.1016/0022-1759(83)90330-7
Peto T, Affron D, Afrough B, et al. COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing. eClinicalMedicine. 2021;36. doi:10.1016/j.eclinm.2021.100924
Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol. 2020;10. doi:10.3389/fcimb.2020.587269
Ariffin N, Yusof NA, Abdullah J, et al. Lateral flow immunoassay for naked eye detection of Mycobacterium tuberculosis. J. Sens. 2020;2020:e1365983. doi:10.1155/2020/1365983
Song LW, Wang YB, Fang LL, et al. Rapid fluorescent lateral-flow immunoassay for hepatitis B virus genotyping. Anal Chem. 2015;87(10):5173-5180. doi:10.1021/ac504832c
Turbé V, Herbst C, Mngomezulu T, et al. Deep learning of HIV field-based rapid tests. Nat Med. 2021;27(7):1165-1170. doi:10.1038/s41591-021-01384-9
Onyilagha C, Nguyen K, Luka PD, et al. Evaluation of a lateral flow assay for rapid detection of African swine fever virus in multiple sample types. Pathogens. 2022;11(2):138. doi:10.3390/pathogens11020138
Cho YI, Sun D, Cooper V, Dewell G, Schwartz K, Yoon KJ. Evaluation of a commercial rapid test kit for detecting bovine enteric pathogens in feces. J VET Diagn Invest. 2012;24(3):559-562. doi:10.1177/1040638712440997
Brüning A, Bellamy K, Talbot D, Anderson J. A rapid chromatographic strip test for the pen-side diagnosis of rinderpest virus. J Virol Methods. 1999;81(1):143-154. doi:10.1016/S0166-0934(99)00068-3
Klein A, Fahrion A, Finke S, et al. Further evidence of inadequate quality in lateral flow devices commercially offered for the diagnosis of rabies. Trop Med Infect Dis. 2020;5(1):13. doi:10.3390/tropicalmed5010013
Anfossi L, Baggiani C, Giovannoli C, et al. Lateral flow immunoassays for aflatoxins B and G and for aflatoxin M1.In: Razzaghi-Abyaneh M ed. Aflatoxins. IntechOpen; 2013. doi:10.5772/51777
Yu S, He L, Yu F, et al. A lateral flow assay for simultaneous detection of deoxynivalenol, fumonisin B1 and aflatoxin B1. Toxicon. 2018;156:23-27. doi:10.1016/j.toxicon.2018.10.305
Çam D. Lateral flow assay for Salmonella detection and potential reagents. In: Ranjbar M, Nojomi M, Mascellino MT. New Insight into Brucella Infection and Foodborne Diseases. IntechOpen; 2019. doi:10.5772/intechopen.88827
Charlermroj R, Makornwattana M, Phuengwas S, Karoonuthaisiri N. A rapid colorimetric lateral flow test strip for detection of live Salmonella Enteritidis using whole phage as a specific binder. Front Microbiol. 2022;13. doi:10.3389/fmicb.2022.1008817
He Y, Zhang X, Zeng K, et al. Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosens. Bioelectron. 2011;26(11):4464-4470. doi:10.1016/j.bios.2011.05.003
Liu X, Xiang JJ, Tang Y, et al. Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Anal. Chim. Acta. 2012;745:99-105. doi:10.1016/j.aca.2012.06.029
López Marzo AM, Pons J, Blake DA, Merkoçi A. High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters. Biosens. Bioelectron. 2013;47:190-198. doi:10.1016/j.bios.2013.02.031
Mei Z, Qu W, Deng Y, et al. One-step signal amplified lateral flow strip biosensor for ultrasensitive and on-site detection of bisphenol A (BPA) in aqueous samples. Biosens. Bioelectron. 2013;49:457-461. doi:10.1016/j.bios.2013.06.006
Du D, Wang J, Wang L, Lu D, Lin Y. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase: Biomarker of exposure to organophosphorus agents. Anal Chem. 2012;84(3):1380-1385. doi:10.1021/ac202391w
Guo YR, Liu SY, Gui WJ, Zhu GN. Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal. Biochem. 2009;389(1):32-39. doi:10.1016/j.ab.2009.03.020
Hnasko RM, Jackson ES, Lin AV, Haff RP, McGarvey JA. A rapid and sensitive lateral flow immunoassay (LFIA) for the detection of gluten in foods. Food Chem. 2021;355:129514. doi:10.1016/j.foodchem.2021.129514
Galan-Malo P, Pellicer S, Pérez MD, Sánchez L, Razquin P, Mata L. Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food. Food Chem. 2019;293:41-48. doi:10.1016/j.foodchem.2019.04.039
Gautam PB, Sharma R, Lata K, Rajput YS, Mann B. Construction of a lateral flow strip for detection of soymilk in milk. J Food Sci Technol. 2017;54(13):4213-4219. doi:10.1007/s13197-017-2890-3
Le QN, Vance A, Bakir N, et al. Validation of the Reveal® 3-D for peanut lateral flow test: AOAC performance tested method SM 111901. J AOAC Int. 2020;103(4):1112-1118. doi:10.1093/jaoacint/qsz041
Ruppert C, Phogat N, Laufer S, Kohl M, Deigner HP. A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin. Microchim Acta. 2019;186(2):119. doi:10.1007/s00604-018-3195-6
Guler E, Yilmaz Sengel T, Gumus ZP, et al. Mobile phone sensing of cocaine in a lateral flow assay combined with a biomimetic material. Anal Chem. 2017;89(18):9629-9632. doi:10.1021/acs.analchem.7b03017
Hudson M, Stuchinskaya T, Ramma S, et al. Drug screening using the sweat of a fingerprint: lateral flow detection of Δ9-tetrahydrocannabinol, cocaine, opiates and amphetamine. J. Anal. Toxicol. 2019;43(2):88-95. doi:10.1093/jat/bky068