5. 荧光原位探针制备
(1)荧光原位杂交所用的探针主要分为三类:
a. 染色体特异重复序列探针,例如 α 卫星、卫星 III类的探针,其杂交靶位常大于 1Mb,不含散在重复序列,与靶位结合紧密,杂交信号强,易于检测;
b. 全染色体或染色体区域特异性探针,其由一条染色体或染色体上某一区段上极端不同的核苷酸片段所组成,可由克隆到噬菌体和质粒中的染色体特异大片段获得;
c. 特异性位置探针,由一个或几个克隆序列组成。
资源链接:http://www.ifish4u.org/
(2)荧光原位杂技探针制备和应用
设计FISH探针需要考虑以下几个步骤:
1. 目标序列选择:确定您要检测的目标序列。这可以是某个基因、染色体区域或其他感兴趣的核酸序列。
2. 探针设计:根据目标序列设计FISH探针。通常使用DNA或RNA探针,其长度通常在15到30个碱基对之间。
a. 序列设计:选择与目标序列互补的序列片段作为探针的序列。确保探针的序列选择合适,能够与目标序列高度特异性地杂交。
b. 标记物选择:选择适当的荧光标记物,如荧光染料或荧光素,用于标记探针。确保所选标记物在实验条件下有较好的稳定性和亮度。
3. 探针标记:将所设计的探针进行标记,使其能够通过荧光显微镜观察。这可以通过直接标记或间接标记的方法实现。
a. 直接标记:直接将荧光染料或荧光素与探针进行共轭。这通常需要具有适当官能团的标记物和探针。
b. 间接标记:首先将标记物与探针的亲和性结合,例如使用亲和标记物如生物素和荧光素的结合,然后通过辅助试剂(如荧光素标记的亲和物)将标记物引入样品中。
4. 验证和优化:对设计的FISH探针进行验证和优化。这包括进行探针的特异性和敏感性测试,并进行相关实验条件的优化。 资源链接:荧光原位杂交(FISH)探针的制备及其应用 - 实验方法 - 丁香通 6. 荧光原位杂交技术(FISH)的应用
(1)荧光原位杂交技术在肿瘤诊断中的应用
肿瘤已经成为现代人类死亡的主要原因之一,肿瘤的提前确诊对治疗有着极大的帮助。过去诊断细胞样本中是否含有肿瘤细胞主要用巴氏染色法等一些细胞化学染色法。新涌现的辅助诊断技术相比过去的方法更快捷简单,荧光原位杂交技术就是其中之一。
a. 血液肿瘤学。临床上对血液肿瘤的FISH检测主要集中在:染色体异位形成的融合基因的检测;基因缺失检测可以发现一些关键基因的缺失,有助于疾病的诊断及预后判断;使用荧光原位杂交技术可对微小残留病灶进行检测,以及进行造血干细胞移植状态的监测。
b. 实体肿瘤学。目前应用于临床的检测基因突变方法以NGS和PCR为主。与FISH相比,NGS对实验室要求高,同时存在检测周期长和检测费用高等问题;荧光PCR只能够通过标准曲线和标准品进行相对定量,无法做到绝对定量,数字PCR的检测系统成本高,通量有限,操作繁琐,也不能在细胞水平上观察到基因突变的状态,不具备定位的功能。FISH技术可以在间期细胞核上找到DNA扩增的直接证据,而且间期细胞核所显示出的扩增DNA荧光信号的数量多少及荧光强度常与DNA扩增的水平有关。
FISH被广泛应用于乳腺癌、膀胱癌,宫颈癌,肺癌和淋巴癌等实体肿瘤的辅助诊断。目前,FISH主要集中用于对肿瘤的早期诊断、疗效检测,个体化治疗和预后判断等方面。
(2)基因定位是荧光原位杂交的最基础最成功的应用。
利用荧光原位杂交灵敏、准确,并且可以一次检测多段基因等特点,可以确定目标基因的准确位置,确定几个基因之间的位置关系,以及基因与染色体端粒之间的关系,基因与着丝点的关系,是构建基因图谱的基本要素。目前荧光原位杂交技术被广泛地应用于基因的物理定位及基因图谱的绘制。
(3)荧光原位杂交技术在产前检查中的应用
产前诊断是优生优育的重要保障。染色体异常是评价重大出生缺陷性疾病的重要指标。最常见的染色体异常是染色体数目异常,可能引发死胎、流产,即使存活也会使患病儿童畸形、生长缓慢、智力低下等。利用荧光原位杂交技术可以检测染色体非整倍体的特点,采集孕妇羊水,对未培养的羊水间期细胞进行检测,确定其是否为非整倍体,对胎儿染色体异常疾病进行诊断,使产前诊断时间缩短至24~48 h。荧光原位杂交的实验技术和探针的不断改进,应用荧光原位杂交方法进行产前诊断对一些重大染色体异常引起的疾病确诊率已经达到99%,相较于传统诊断方法更快捷,能够减少孕妇等待的痛苦。