②RCH技术:RCA-CRISPR-split-HRP(RCH)结合了滚环扩增(Rolling Circle Amplification,RCA)、CRISPR/dCas9和辣根过氧化物酶(HRP)技术,可经显色反应区分miRNA的单碱基差异。其反应原理如图4所示:首先,靶标miRNA与哑铃状特异性探针结合,打开探针的双链茎部区域,形成环状探针,并在phi29 DNA聚合酶作用下进行滚环扩增,形成很多重复连续的单链DNA序列,且由于序列本身存在互补配对区域,可经互补配对形成大量规则的茎-环结构;然后,加入融合了split-HRP报告片段的dCas蛋白,并在sgRNA 的引导下,定位至扩增产物的茎-环结构,分离的HRP报告片段因此聚集,形成有活性的HRP蛋白;HRP蛋白发挥催化活性,使得黄色底物TMB转化为蓝色产物。
参考资料[1] Carter J, Wiedenheft B. SnapShot: CRISPR-RNA-guided adaptive immune systems. Cell. 2015 Sep 24;163(1):260-260.[2] Hryhorowicz M, Lipiński D, Zeyland J, et al. CRISPR/Cas9 Immune System as a Tool for Genome Engineering. Arch Immunol Ther Exp (Warsz). 2017 Jun;65(3):233-240.[3] Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015 Oct 22;163(3):759-71.[4] Shmakov S, Abudayyeh OO, Makarova KS, W et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell. 2015 Nov 5;60(3):385-97.[5] Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016 Aug 5;353(6299):aaf5573.[6] East-Seletsky A, O'Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature. 2016 Oct 13;538(7624):270-273. [7] Smargon AA, Cox DBT, Pyzocha NK, et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. 2017 Feb 16;65(4):618-630.e7.[8] Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017 Apr 28;356(6336):438-442.[9] East-Seletsky A, O'Connell MR, Burstein D, et al. RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. Mol Cell. 2017 May 4;66(3):373-383.[10] Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018 Apr 27;360(6387):436-439.[11] Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018 Apr 27;360(6387):439-444.[12] Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018 Apr 27;360(6387):444-448.[13] Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018 Nov 16;362(6416):839-842.[14] Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018 Apr 24;4:20.[15] Li L, Li S, Wu N, et al. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation. ACS Synth Biol. 2019 Oct 18;8(10):2228-2237. [16] Zhou W, Hu L, Ying L, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun. 2018 Nov 27;9(1):5012.[17] Pardee K, Green AA, Takahashi MK, et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell. 2016 May 19;165(5):1255-1266.[18] Huang M, Zhou X, Wang H, et al. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection. Anal Chem. 2018 Feb 6;90(3):2193-2200.[19] Zhang Y, Qian L, Wei W, et al. Paired Design of dCas9 as a Systematic Platform for the Detection of Featured Nucleic Acid Sequences in Pathogenic Strains. ACS Synth Biol. 2017 Feb 17;6(2):211-216.[20] Qiu XY, Zhu LY, Zhu CS, et al. Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9. ACS Synth Biol. 2018 Mar 16;7(3):807-813.[21] Li Y, Li S, Wang J, et al. CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol. 2019 Jul;37(7):730-743.