Bringing medical advances from the lab to the clinic 关键词:病理;人工智能;Nature (更多生物医学前沿,点击👆免费获取) 在该研究中,这个结合视觉编码器和大型语言模型(LLM)的多模态生成式AI助手PathChat的核心组件包括:
研究方法与数据集为训练和评估PathChat,研究团队构建了一个包含456,916条指令的数据集,其中包括999,202次问答回合。数据集来源多样,涵盖了图像说明、PubMed开放获取文章、病理学病例报告和全视野图像的兴趣区域。 此外,研究团队还创建了一个高质量的病理学问答基准(PathQABench),包括从多家医院收集的105例全视野图像。评估方法包括多选诊断问题和开放性问题,分别测试PathChat在病理图像分析和临床背景结合诊断中的表现。 主要结果
编者按:随着人工智能的发展,AI医学助手进入到临床已经成为必然。PathChat作为一个多模态生成式AI助手,展示了其在病理学领域的巨大潜力。通过结合视觉和语言输入,该助手不仅在诊断准确性上表现出色,还在病理学教育和研究中具有重要应用价值。临床应用:
原文链接: https://www.nature.com/articles/s41586-024-07618-3 声明: 本文只是分享和解读公开的研究论文及其发现,以作科学文献记录和科研启发用;并不代表作者或本公众号的观点,更不代表本公众号认可研究结果或文章。 为了给大家提供一个完整而客观的信息视角,我们有时会分享有冲突或不同的研究结果。请大家理解,随着对疾病的研究不断深入,新的证据有可能修改或推翻之前的结论。 作者:Dr. Xie;助理:ChatGPT;编辑:Jessica。 美国Healsan Consulting(恒祥咨询),专长于Healsan医学大数据分析(Healsan™)、及基于大数据的Hanson临床科研培训(HansonCR™)和医学编辑服务(MedEditing™)。主要为医生科学家、生物制药公司和医院科研处等提供分析和报告,成为诸多机构的“临床科研外挂”。 网址:https://healsan.com/ |