改进的人类肠道微生物组的高分子量DNA提取,纳米孔测序和宏基因组学装配Improved high-molecular-weight DNA extraction, Nature Protocols [IF: 10.419] DOI:https://doi.org/10.1038/s41596-020-00424-x 发表日期:2020-12-04 第一作者:Dylan G. Maghini1 通讯作者:Ami S. Bhatt 合作作者:Eli L. Moss,Summer E. Vance 主要单位: 1美国斯坦福大学遗传学系(Department of Genetics, Stanford University, Stanford, CA, USA) 1美国斯坦福大学医学系(Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA) 写在前面分享标题:Nature 子刊:三代测序的DNA提取和宏基因组学分析 关键字:宏基因组学,生物信息学,文库制备,长读长测序,人类肠道菌群,高分子量DNA 摘要人类肠道菌群的短读长宏基因组测序和从头基因组组装无需分离和培养即可获得细菌基因组草图。然而,由短读长测序组装的细菌基因组通常是片段化的。此外,这些由宏基因组组装的基因组通常不包括重复的基因组元件,例如移动遗传元件,从而损害了我们对这些元件对重要细菌表型贡献的理解。虽然长读长测序已成功应用于连续细菌分离基因组的装配,但从粪便样本中提取足够分子量、纯度和数量以进行宏基因组测序的DNA可能具有挑战性。在此,我们提出了一种从人类粪便样本中提取微克量的高分子量DNA的方法,该方法适用于下游长读长测序的应用。我们还介绍了Lathe (www.github.com/bhattlab/lathe),这是一种用于长读长碱基识别、组装、长读长和Illumina短读长的校对和基因组环化的计算工作流程。总而言之,此方法可以在大约10天内,包括2天的实验操作和计算下从复杂的人类肠道样本中产生高质量的连续或环状细菌基因组。 步骤概述在这里,我们描述了从人粪便样品中提取高分子量(HMW)DNA的改进方案(图1),以及对测序方法的建议以及用于长读长数据的宏基因组组装/拼接的工作流程(图2)。具体来说,我们描述了用于酶促细菌细胞裂解(步骤2-4),RNA和蛋白质消化(步骤7),样品纯化(步骤8和9)和DNA片段选择(步骤13-15)的方法以及我们针对长读长组装软件、抛光方法和错误校正的建议。浓缩DNA的提取方法见补充说明1。 图 1 高分子量DNA提取工作流程High-molecular-weight DNA extraction workflow 翻译如下图
图 2 测序后生物信息学分析工作流程Post-sequencing bioinformatic workflow 翻译如下图
优势与局限这种DNA提取方法已被优化用于从人类粪便样本中提取高分子量(HMW)DNA,但也已在模拟微生物群落和细菌分离株上得到验证。我们希望该方案可以适用于其他样品类型,尽管可能需要对裂解前和裂解后步骤进行修改以解释特定于样品的制备和污染物清除的问题是必要的。机械裂解方法(如珠子击打)仍然是连续裂解和下游相对丰度分类的金标准,因为与酶解法相比,机械裂解法的偏差更小。然而,我们以前已经证明,这种酶解法对革兰氏阳性和革兰氏阴性的生物都能进行相对一致的裂解。此外,尽管在大量投入样品的情况下机械裂解方法可能就足够了,因此可以进行广泛的大小选择,但我们的方法可以优化DNA的高产量,并且在输入样品量有限的情况下非常有利。 我们用于碱基识别,组装和环化的下游计算工作流程专为从纳米孔或PacBio测序生成的易错,长读长测序数据而设计。由于纳米孔测序会在均聚物区域产生较高的错误率,而PacBio测序具有较高但相对随机的错误率,因此仍建议使用短读长进行修正以进行插入缺失校正和高质量组装。我们发现,当短读长没有均匀地覆盖重叠群时,短读长修正效果会受到影响(例如,在从不同的DNA提取物中产生短长的情况下,或在某些短读长文库制备方法中修饰有偏差的低GC区域时)。我们预计,随着对长读长测序技术和碱基识别(比如PacBio循环一致测序和神经网络碱基识别)的未来改进,对短读长进行额外修正的需求将变得不再那么紧要。 替代方法从粪便中提取DNA时,珠子敲打(球磨)是酶促裂解的最常见替代方法。实际上,这种机械裂解方法已被广泛用于复杂基质中革兰氏阳性和革兰氏阴性细菌的裂解。尽管通过球磨获得的DNA在很大程度上被剪切而无法产生较长的读长,但随后的严格的尺寸选择步骤可以产生更高分子量的DNA。这种方法可能是有利的,因为球磨可以有效地溶解多种生物。然而,在球磨后获得的DNA大多被剪切成非常小的尺寸,因此尺寸选择后的DNA产量往往受到限制。这种低产量的问题可以通过对具有足够生物量和数量的样品进行多次平行提取来克服。使用球磨时,另一个需要考虑的因素是,大小选择可能很少获得更容易裂解且具有更短、更易剪切的DNA的生物。 步骤DNA提取DNA extraction 耗时8小时
!注意 所有样品均应在知情同意下并按照相关准则获得。 !注意
关键步骤 phase-lock的使用是可选的,但使下一步的移液更加容易。但是,使用比指定数量更多的phase-lock会对产量产生负面影响。
见疑难解答
关键步骤 Genomic-tip不应该被强行压入试管中。它必须位于废物容器和收集管上方。如果没有其他合适的设置,通常可以通过使用试管架和/或移液器吸头盒来完成。 见疑难解答
关键步骤 沉淀可能很小,可能会从管壁上脱落。不要试图用移液器吸掉所有80%的乙醇,因为这可能会除去沉淀物。相反,要留下一小部分乙醇和沉淀物。
暂停点 提取的DNA可以在4°C下保存几个月。
关键步骤 每次定制缓冲液的制备,磁珠悬浮液与样品的比率都会有所不同。用非贵重的样品测试每种微珠制剂的选择严格性,以确保正确选择。
关键步骤 不要过度干燥珠子,因为这可能会对DNA的回收产生不利影响,并可能导至DNA与珠子不可逆地结合。
暂停点 提取的DNA可以在4°C下保存几个月
见疑难解答
见疑难解答
暂停点 提取的DNA可以在4°C下保存几个月。 见疑难解答 文库制备和测序耗时4天 关键 该方案用于文库制备和随后的Oxford Nanopore MinION测序。对于在其他Oxford Nanopore或PacBio平台上进行测序,请遵循为这些平台设计的方案。
见疑难解答
关键步骤 根据样品纯度和流通池中活性孔的原始数量,此步骤可能需要1-4天。对于下游装配应用,我们建议生成6Gbp的长读长数据。装配的连续性将随着覆盖深度的增加而提高。 宏基因组组装与后处理耗时5天 关键 由于碱基识别,组装,修正和循环化是资源密集型过程,因此我们建议在高性能计算环境中执行所有计算分析。
疑难解答疑难解答建议见表1。 耗时步骤1–18,DNA提取:8小时 步骤19–22,文库制备和测序:≤4天 步骤23–26,宏基因组学组装和后处理:5 天 预期结果该方法描述了从人类粪便样品中提取、测序组装和分箱高分子量DNA的具体实验步骤;根据我们的经验,我们发现此处描述的DNA提取方法可从最初投入的300-500 mg粪便中产生1-2μgDNA。该DNA的大小分布峰为15–50 kb,足以用于无需PCR扩增和随后在Oxford Nanopore MinION测序仪上测序的文库制备。我们发现这些方法能够在MinION R9.4流通槽上生成6–30 Gbp的长读长数据。根据我们的经验,Lathe工作流程能够从具有6 Gbp长读长数据的复杂肠道宏基因组中产生至少一个环状细菌基因组。但是,这些结果可能会因覆盖率,肠道复杂性,DNA片段大小和细菌基因组结构而异。 ReferenceDylan G. Maghini, Eli L. Moss, Summer E. Vance & Ami S. Bhatt. (2021). Improved high-molecular-weight DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome. Nature Protocols 16, 458-471, doi: https://doi.org/10.1038/s41596-020-00424-x |