图7不同方案下全年平均电压分布Fig.7Annual average voltages under different schemes由表4所示结果可以注意到,对于分布式光伏以单位、恒定和最优功率因数运行的情况,在四季典型日共96 h内,配电网累计的总电压偏移量分别降低为54.765 p.u.、53.060 p.u.和52.824 p.u.,而没有接入分布式光伏的总电压偏移量为66.903 p.u.。在3种情况下最高电压偏移量为54.765 p.u.,对应于分布式光伏以单位功率因数接入配电网29节点运行模式下此时光伏系统只向配电网提供有功功率,而不提供无功功率。相比之下,最低电压偏移量为52.824 p.u.,对应于分布式光伏以最优功率因数接入配电网30节点运行模式,此时光伏系统可以通过调整无功功率的出力从而减小配电网无功功率的波动,提高电网的稳定性。以上仿真结果充分表明分布式光伏以最优功率因数并网的工作模式对配电网系统电压曲线的改善有着显著贡献。
表4不同规划方案结果对比Tab.4Comparison of the results of different planning scenarios
另一方面,由表4结果也能够看出最优功率因数对于配电网的有功损耗改善起着重要作用,当分布式光伏以最优功率因数接入配电网30节点运行时,在四季典型日共96 h内配电网累计的总有功损
耗为3 270.782 kW,相较于未接入分布式光伏前的配电网总网损降低了20.504%,而分布式光伏以单位和恒定功率因数并网运行时总有功损耗分别为3 559.943 kW、3 330.625 kW,相较于未接入分布式光伏前的配电网分别降低了13.476%和19.049%,显然考虑最优功率因数下网损的改善效果更显著。由此表明最优功率因数并网可以减少系统的无功功率消耗,从而减少了功率在输电过程中的损耗,有效提高了光伏系统的效率。综上,本文所提模型能够有效减小配电网有功损耗,提高电能质量,且考虑功率因数的优化可以更准确地确定适合的装机容量和接入位置。
2)对算法性能进行验证,为了验证ISMA算法在分布式光伏选址定容方面的优势,实验选择对比麻雀优化算法(sparrow search algorithm,SSA)和SMA算法的仿真结果,为公平比较ISMA、SMA和SSA算法性能,统一设置上层优化最大迭代次数和种群数量分别取50和30,下层优化最大迭代次数和种群数量同时取30,ISMA算法参数设置如表3所示,不同算法的优化结果如表5所示。
表5不同算法的优化结果Tab.5Optimization results of different algorithms
图8所示为3种算法优化下不同时段分布式光伏的最优功率因数。
图8不同时段下的最优功率因数Fig.8Optimal power factors at different time periods图9为不同算法优化后的全年平均电压分布。
图9不同算法优化后的全年平均电压分布Fig.9Annual average voltages optimized by different algorithms由图9和表5可以看出,本文所提ISMA算法的优化结果最好,经本文所提算法优化下的配电网总网损、节点处总电压偏移量和分布式光伏投资成本分别为3 270.782 kW、52.824 p.u.和911.422万元,虽然在投资成本方面相比于SSA算法优化后的值高出29.53万元,但在网损和电压偏移量方面相比于SSA算法优化后的值分别降低了252.903 kW和4.316 p.u.,能够兼顾多个因素的优化,并根据决策者的意愿综合权衡得到综合考虑各个因素后的最优解,综上,可以看出ISMA算法能够更好地解决高维度非线性的问题,具备更高的优化精度。
[1]李琰,吕南君,刘雪涛,等.考虑新能源消纳和网损的分布式光伏集群出力评估方法[J].电力建设,2022,43(10):136-146.
LI Yan,LÜ Nanjun,LIU Xuetao,et al.Output evaluation method of distributed photovoltaic cluster considering renewable energy accommodation and power loss of network[J].Electric Power Construction,2022,43(10):136-146.
[2]刘蕊,吴奎华,冯亮,等.含高渗透率分布式光伏的主动配电网电压分区协调优化控制[J].太阳能学报,2022,43(2):189-197.
LIU Rui,WU Kuihua,FENG Liang,et al.Voltage partition coordinated optimization control of active distribution network of high penetration distribution PVs[J].Acta Energiae Solaris Sinica,2022,43(2):189-197.
[3]丁明,方慧,毕锐,等.基于集群划分的配电网分布式光伏与储能选址定容规划[J].中国电机工程学报,2019,39(8):2187-2201.
DING Ming,FANG Hui,BI Rui,et al.Optimal siting and sizing of distributed PV-storage in distribution network based on cluster partition[J].Proceedings of the CSEE,2019,39(8):2187-2201.
[4]杨欣晔,杨嘉炜,邓靖雷.基于光学优化算法的分布式电源选址与定容[J].供用电,2018,35(11):66-71.
YANG Xinye,YANG Jiawei,DENG Jinglei.Locating and sizing of distributed generation based on optics inspired optimization (OIO)[J].Distribution & Utilization,2018,35(11):66-71
[5]陈德炜,施永明,徐威,等.基于改进FPA算法的含分布式光伏配电网选址定容多目标优化方法[J].电力系统保护与控制,2022,50(7):120-125.
CHEN Dewei,SHI Yongming,XU Wei,et al.Multi-objective optimization method for location and capacity of a distribution network with distributed photovoltaic energy based on an improved FPA algorithm[J].Power System Protection and Control,2022,50(7):120-125.
[6]马丽叶,王海锋,卢志刚.计及故障率影响含电动汽车的分布式电源选址定容双层协调规划[J].电网技术,2021,45(12):4749-4760.
MA Liye,WANG Haifeng,LU Zhigang.Double-layer coordinated planning for location and capacity of distributed power supply with electric vehicles considering failure rate[J].Power System Technology,2021,45(12):4749-4760.
[7]雍友.考虑电动汽车充电负荷的分布式电源选址定容规划研究[D].成都:西南交通大学,2021.
[8]刘向实,王凌纤,吴炎彬,等.计及配电网运行风险的分布式电源选址定容规划[J].电工技术学报,2019,34(S1):264-271.
LIU Xiangshi,WANG Lingxian,WU Yanbin,et al.Locating and sizing planning of distributed generation power Supply considering the operational risk cost of distribution network[J].Transactions of China Electrotechnical Society,2019,34(S1):264-271.
[9]曹振其,彭敏放,沈美娥.考虑源荷不确定性的分布式电源选址定容[J].电力系统及其自动化学报,2021,33(2):59-65.
CAO Zhenqi,PENG Minfang,SHEN Mei′e.Siting and sizing of distributed generations considering uncertainties in source and load[J].Proceedings of the CSU-EPSA,2021,33(2):59-65.
[10]李子健,郭佩乾,马宁宁,等.融合双重策略粒子群算法的分布式电源配网无功优化[J].南方电网技术,2022,16(6):14-22,81.
LI Zijian,GUO Peiqian,MA Ningning,et al.Reactive power optimization for distribution system with DG by particle swarm optimization algorithm integrating dual strategies[J].Southern Power System Technology,2022,16(6):14-22,81.
[11]杨博,俞磊,王俊婷,等.基于自适应蝠鲼觅食优化算法的分布式电源选址定容[J].上海交通大学学报,2021,55(12):1673-1688.
YANG Bo,YU Lei,WANG Junting,et al.Optimal sizing and placement of distributed generation based on adaptive manta ray foraging optimization[J].Journal of Shanghai Jiaotong University,2021,55(12):1673-1688.
[12]卢光辉,滕欢,廖寒逊,等.基于改进天牛须搜索算法的分布式电源选址定容[J].电测与仪表,2019,56(17):6-12.
LU Guanghui,TENG Huan,LIAO Hanxun,et al.Location and sizing of distributed generation planning based on the improved beetle antennae search algorithm[J].Electrical Measurement & Instrumentation,2019,56(17):6-12.
[13]郑建,徐青山,施雨松.基于启发式矩匹配法的分布式电源选址定容方法[J].电力系统及其自动化学报,2021,33(8):15-23.
ZHENG Jian,XU Qingshan,SHI Yusong,et al.Method of location and capacity determination for distributed generation based on heuristic moment matching method[J].Proceedings of the CSU-EPSA,2021,33(8):15-23.
[14]MIRSAEIDI S,LI S R,DEVKOTA S,et al.A power loss minimization strategy based on optimal placement and sizing of distributed energy resources[J].International Journal of Numerical Modelling: Electronic Networks, Devices and Fields,2022,35(4):3000.1 - 3000.15.
[15]官飞煜.小水电上网功率因数考核优化方法[D].广州:广东工业大学,2018.
[16]戴林東.静止无功补偿装置稳压控制及选址定容研究[D].重庆:重庆大学,2020.
[17]陈巍,杨兵,朱益民.考虑机组功率因数的分布式风机选址定容研究[J].自动化技术与应用,2022,41(2):133-135,161.
CHEN Wei,YANG Bing,ZHU Yimin.Research on locating and sizing of distributed wind generators considering unit power factor[J].Techniques of Automation and Applications,2022,41(2):133-135,161.
[18]杨扬,王彤.基于多目标双层规划的分布式电源选址定容[J].华北电力大学学报(自然科学版),2024,51(2):21-32.
YANG Yang,WANG Tong.Optimal siting and sizing of distributed generators based on multi-objective double-layer planning[J].Journal of North China Electric Power University(Natural Science Edition),2024,51(2):21-32.
[19]NGUYEN T P,VO D N.A novel stochastic fractal search algorithm for optimal allocation of distributed generators in radial distribution systems[J].Applied Soft Computing,2018(70):773-796.
[20]黄付顺,王倩,何美华.考虑低碳效益和时序特性的分布式电源优化配置[J].电力系统及其自动化学报,2016,28(8):61-68.
HUANG Fushun,WANG Qian,HE Meihua.Optimal allocation of distributed generator based on carbon benefits and time-sequence characteristics[J].Proceedings of the CSU-EPSA,2016,28(8):61-68.
[21]马世乾,张杰,商敬安,等.考虑时序最优潮流的分布式电源优化配置方法[J].电力系统及其自动化学报,2022,34(10):112-119.
MA Shiqian,ZHANG Jie,SHANG Jing’an,et al.Optimal allocation method for distributed generations considering time series optimal power flow[J].Proceedings of the CSU-EPSA.,2022,34(10):112-119.
[22]马丽叶,王海锋,卢志刚.计及故障率影响含电动汽车的分布式电源选址定容双层协调规划[J].电网技术,2021,45(12):4749-4760.
MA Liye,WANG Haifeng,LU Zhigang.Double-layer coordinated planning for location and capacity of distributed power supply with electric vehicles considering failure rate[J].Power System Technology,2021,45(12):4749-4760.
[23]李诗颖,杨晓辉.基于双向动态重构与集群划分的光伏储能选址定容[J].电力系统保护与控制,2022,50(3):51-58.
LI Shiying,YANG Xiaohui.Capacity and location optimization of photovoltaic and energy storage based on bidirectional dynamic reconfiguration and cluster division[J].Power System Protection and Control,2022,50(3):51-58.
[24]刘可,王昕,刘冬平,等.基于BFOA算法的配电网DG选址定容方法[J].智慧电力,2022,50(9):90-96.
LIU Ke,WANG Xin,LIU Dongping,et al.DG site selection and capacity planning method in distribution network based on BFOA algorithm[J].Smart Power,2022,50(9):90-96.
[25]冯喜春,韩璟琳,赵辉,等.主从博弈框架下配电网规划运行多目标协同优化方法[J].南方电网技术,2023,17(1):26-34,72.
FENG Xichun,HAN Jinglin,ZHAO Hui,et al.Multi-objective cooperative optimization method of distribution network planning and operation under the stackelberg game framework[J].Southern Power System Technology,2023,17(1):26-34,72.
[26]郭松,王睿,张唯真,等.光伏发电并网对用户功率因数的影响研究[J].智能电网,2015,3(10):906-910.
GUO Song,WANG Rui,ZHANG Weizhen,et al.Effect of grid-connected photovoltaic power generation on customer power factor[J].Smart Grid,2015,3(10):906-910.
[27]刘自发,于普洋,李颉雨.计及运行特性的配电网分布式电源与广义储能规划[J].电力自动化设备,2023,43(3):72-79.
LIU Zifa,YU Puyang,LI Jieyu.Planning of distributed generation and generalized energy storage in distribution network considering operation characteristics[J].Electric Power Automation Equipmen,2023,43(3):72-79.
[28]杨顺吉,李庆生,明志勇,等.考虑源荷随机性的配电网多目标概率无功优化[J].南方电网技术,2023,17(1):125-135.
YANG Shunji,LI Qingsheng,MING Zhiyong,et al.Multi-objective probabilistic reactive power optimization of distribution network considering the randomness of source and load[J].Southern Power System Technology,2023,17(1):125-135.
[29]LI S M,CHEN H L,WANG M J,et al.Slime mould algorithm: a new method for stochastic optimization[J].Future Generation Computer Systems,2020(111):300-323.
[30]刘成汉,何庆.改进交叉算子的自适应人工蜂群黏菌算法[J].小型微型计算机系统,2023,44(2):263-268.
LIU Chenghan,HE Qing.Adaptive artificial bee colony slime mold algorithm with improved crossover operator[J].Journal of Chinese Computer Systems,2023,44(2):263-268.
[31]KARABOGA D,BASTURK B.On the performance of artificial bee colony (ABC) algorithm[J].Applied Soft Computing,2008,8(1):687-697.
[32]徐博,钱成功,牛军伟,等.基于深度自编码器的分钟级负荷数据聚类分析[J].广东电力,2023,36(3):57-67.
XU Bo,QIAN Chenggong,NIU Junwei,et al.Cluster analysis of minute load data based on deep autoencoder[J].Guangdong Electric Power,2023,36(3):57-67.
[33]王子琪,张慧媛,许军,等.基于改进人工蜂群算法的区域电网储能系统能量管理优化策略[J].中国电力,2022,55(9):16-22,55.
WANG Ziqi,ZHANG Huiyuan,XU Jun,et al.An energy management optimization strategy for regional power grid energy storage system based on improved artificial bee colony algorithm[J].Electric Power,2022,55(9):16-22,55.
ARTICLE META Integration Planning of Distributed Photovoltaic Generation Based on Improved Slime Mould Algorithm
YANG Haizhu
1
LIU Sen
1
ZHANG Peng
2
BAI Yanan
1
(1、School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo,Henan454000, China;
2、School of Electrical and Information Engineering, Tianjin University, Tianjin300072, China)
ABSTRACT
In view of the unreasonable layout of distributed photovoltaics will bring major impact to the distribution network, a double-layer optimized locating and sizing model of distributed photovoltaic considering the load and PV system output timing is proposed. The upper-layer optimization aims to screen a set of combined data of PV access nodes and installed capacity. The lower-layer optimization takes the network loss, voltage offset and minimum investment cost as the objective function, and feeds back the optimal planning results to the upper optimization layer while solving the high-dimensional and nonlinear power factor optimization problem, so as to determine the optimal access node and installed capacity of distributed photovoltaics. In addition, the adaptive artificial bee colony slime mold algorithm with improved crossover operator is introduced to solve the model, which has excellent global search ability, local development ability and renewal mechanism of the individual, which can obtain more ideal high-quality solutions for such models. The simulation results show that the improved slime mould algorithm not only considers the economy, but also significantly improves the active power loss and power quality of the distribution network compared to other algorithms.
KEYWORDS
distributed photovoltaic;locating and sizing;improved slime mould algorithm;distribution network;power factor
ABOUT
引用本文:杨海柱,刘森,张鹏等.基于改进黏菌算法的分布式光伏发电并网规划[J].南方电网技术,2024,18%2811%29:119-128.%28YANG Haizhu,LIU Sen,ZHANG Peng,et al.Integration Planning of Distributed Photovoltaic Generation Based on Improved Slime Mould Algorithm[J].Southern Power System Technology,2024,18%2811%29:119-128.%29
作者简介:杨海柱(1975),男,副教授,博士,研究方向为新能源发电功率预测、综合能源系统,35948436@qq.com;
作者简介:刘森(1999),男,通信作者,硕士研究生,研究方向为电力系统及其自动化,1769808145@qq.com;
作者简介:张鹏(1984),男,副教授,博士,研究方向为区域综合能源系统优化调度,zhangpeng1984@tju.edu。
基金信息:国家自然科学基金资助项目(62273312)。
中图分类号:TM715
文章编号:1674-0629(2024)11-0119-10
文献标识码:A
收稿日期:2023-05-17
网络首发日期:2024-02-20
出版日期:2024-11-20
网刊发布日期:2024-12-24