立即注册找回密码

QQ登录

只需一步,快速开始

微信登录

微信扫一扫,快速登录

手机动态码快速登录

手机号快速注册登录

搜索

图文播报

查看: 4031|回复: 0

[盘点时刻] 2013世界生物医学科技进展

[复制链接]
发表于 2014-1-4 08:30 | 显示全部楼层 |阅读模式

登陆有奖并可浏览互动!

您需要 登录 才可以下载或查看,没有账号?立即注册 微信登录 手机动态码快速登录

×


美国

遗传学研究深入揭示、利用基因机制;细胞研究让多种细胞互换“身份”;再生医学造出多种器官组织。

田学科(科技日报驻美国记者)在遗传学研究领域,杜克大学模仿人体细胞内复杂的基因调控过程,模拟出多种蛋白质如何通过复杂相互作用调控一个基因。

斯坦福大学设计出一种由DNA和RNA制成的生物晶体管——转录器,可在活细胞中像晶体管一样进行计算和记录,将计算带入生物学活细胞领域;北卡罗来纳大学也设计了一种基于DNA的“与”门,成功演示了如何在人体细胞内进行逻辑门操作,为在活细胞内运行复杂的计算铺平了道路。

耶鲁大学和哈佛大学合作,为一种细菌重新编写了完整基因组编码,提高了其抗病毒能力,第一次从根本上改变了遗传密码,可用于重新设计生物特性或扩展生物功能。

华盛顿大学医学院成功诱导细胞向光移动;加州大学圣地亚哥医学院研发出一项新技术可确定DNA来源于母亲还是父亲;能源部联合基因组研究所等单位改良了基因组组装工艺流程,能生成长达数万个核苷酸长度的读取片段,且最终组装序列准确率大于99.999%;联合基因组研究所对201种微生物和古生细菌细胞进行了测序,发现微生物远比我们所知道的要丰富多样,并揭示了不同物种间令人惊奇的关联。

细胞研究方面,俄勒冈健康科学大学等成功将人类皮肤细胞重组为胚胎干细胞,可在体内转化成任何其他类型细胞。

斯克里普斯研究所找到了一种可将骨髓干细胞直接转变成脑细胞的方法,激活单个受体就将骨髓细胞转化为神经细胞;凯斯西储大学医学院则将老鼠皮肤细胞直接变成了功能性脑细胞。反过来,哈佛大学研究证明了脑细胞也能“变身”,通过直接谱系重编程,把胼胝体投射神经元转变成类似的皮质脊髓运动神经元。

桑福德-伯纳姆医学研究所等单位,用一位右室心肌病患者的皮肤细胞培育出心肌细胞,并在培养皿中诱导出心脏病模型,能再现该病发作时的主要特征。

匹兹堡大学首次用人体干细胞使老鼠心脏再次跳起来,有望使个性化的诱导多能干细胞(iPS)用于器官移植。

西奈山医院对18个诱导血液形成活动的遗传因子进行筛查,找到4个转录因子并加以正确组合,培育出了血管前体细胞及随后的成纤维细胞,并造出类似人体造血干细胞的细胞。

先进细胞科技公司用人类胚胎干细胞治疗一种常见失明,将一名几乎失明患者视力提高到0.5;加州大学旧金山分校科学家向小鼠大脑海马区移植内侧神经嵴细胞,成功控制了小鼠癫痫发作。

再生医学方面,马萨诸塞州总医院科学家培育出一个肾脏,在小鼠实验中能成功过滤血液、产生尿液;此外,他们还用牛和羊身上提取的活组织培育出了人造耳。

纽约干细胞基金会研究所首次用人体皮肤细胞制造出了性能稳定的骨头替代品,有望为骨损伤患者提供个性化、无排斥的骨移植物。

此外,科学家还首次发现一种嵌在人体基因组内的生物钟,能精确测出各种人体器官、组织和细胞型的“年龄”。他们还通过降低单个基因的表达,让一群实验鼠平均寿命延长了20%。

在脑科学研究中,麻省理工学院科学家成功为小鼠大脑植入虚假记忆。他们运用已有方法,人为激活小鼠大脑中一个特定记忆,同时给予新刺激,使两者联系在一起转化成一个新记忆。

南加州大学科学家演示了一种“记忆假体”,并表示这种“记忆假体”已步入人体测试阶段,15名患有癫痫病的志愿者正在接受这种植入设备的测试。

得克萨斯大学研究人员结合模型预测和脑细胞训练,使模拟记忆功能减退的海蜗牛神经元的连接恢复到近乎正常水平。

美国华盛顿大学科学家进行人类脑对脑接口实验首获成功,可发送脑信号遥控同伴做简单运动。

药物研究方面,马里兰州疫苗研究中心研发“万能”流感疫苗成效显著,实验鼠接种新疫苗后产生的抗体水平是传统疫苗的34倍,在雪貂实验中也达到10倍。

中美科学家合作,让蚊子感染一种特殊细菌“沃尔巴克氏体”,从而拥有抵抗疟疾等疾病的能力,并能传给后代。

麻省理工学院研究人员找到了一种新毒素,能够通过阻断DNA复制来抑制细菌生长,为开发下一代抗生素奠定了基础。

加州大学圣地亚哥分校从海洋微生物中提取出“炭疽毒素”,能有效杀灭耐抗生素极强的细菌,如炭疽和超级病菌MRSA。此外,该校研究人员还开发出一种包覆有红细胞膜的纳米粒子,可中和包括耐抗生素菌在内的许多细菌产生的毒素,成为治疗耐药菌的有效工具。

密苏里大学研究人员开发出一种放射性纳米粒子,能将癌症患者身体任何地方的淋巴癌细胞作为攻击靶子,且不会附着和破坏健康细胞。

杜克大学医学院找到60个“阿司匹林响应标记”基因,并可验血检测阿司匹林对患者是否有效,还可预测、预报心脏病发作的风险。

在艾滋病与肿瘤学研究方面,约翰霍普金斯儿童中心、密西西比大学医学中心和麻省大学医学院的研究人员首次实现了对一名感染艾滋病病毒(HIV)婴儿的“功能性治愈”。

HIV抗体疗法动物实验获突破,有望与目前抗逆转病毒疗法结合,有效对付HIV。科学家从艾滋病人体内分离出三种强效广谱的HIV抗体,能使恒河猴体内SHIV的浓度急剧下降。

费城儿童医院科学家用一种蛋白质调节关键免疫细胞功能,从而安全控制肿瘤生长,证明了通过调节免疫机能来控制肿瘤生长的可行性。

佛罗里达国际大学研发出一种磁电纳米粒子,可释放抗HIV药物活化型三磷酸体,实验中的治疗效果甚为理想。

英国

脑科学研究有新成果,合成生物学受重视,干细胞、基因研究成果为病患带来曙光,体外受精技术领跑世界。

刘海英(科技日报驻英国记者)2013年初,欧盟宣布将人脑工程列入“未来和新兴技术旗舰项目”,意味着脑科学将成为未来研究热点。科学家在人脑研究方面取得多项成果:布里斯托大学研究人员研究确认了调控记忆开关的关键分子;牛津大学和伦敦大学学院科学家研究发现脑部微电击可提高大脑运算能力;英、德和奥等国研究人员用人类多能干细胞在试管中培育出模拟人脑组织。这一系列研究成果有助于科学家了解人脑之谜,开发出治疗大脑疾病的新方法。

合成生物学方面,帝国理工学院科学家开发出可将微生物工厂生物组件的制作时间从原来的2天缩短为6个小时的新方法;布里斯托大学科学家开发出合成生物学“纳米笼”技术,在化学、生物学和医学领域拥有广泛应用前景。

干细胞研究方面,爱丁堡大学科学家成绩突出。年初,他们发现麻风病细菌可将成熟细胞转化为干细胞;随后,他们革新了干细胞培养技术,用水溶性凝胶作为支撑干细胞生长的微型支架;5月,他们发现Oct4蛋白可助胚胎干细胞自我更新。

其他研究机构也不断有新成果:赫瑞瓦特大学科学家首次将人类胚胎干细胞用于三维打印;格拉斯哥大学研究人员宣布,首个干细胞治疗中风试验初见成效,部分患者病情有所缓解;伦敦大学科学家使用实验鼠胚胎干细胞,首次培育出眼部感光细胞。

基因研究方面,首次在人类活体细胞中发现四螺旋DNA结构,这种结构可为未来的个性化治疗提供靶标;新发现了24种与近视相关基因;通过CCND1基因缺陷的研究证明基因缺陷具有多米诺骨牌效应;发现可抑制HIV扩散的新基因MX2;证明南亚人色素沉着多样性相关基因——SLC24A5基因变异模式会受到社会选择差异影响。

英国在试管婴儿领域的研究依然领先世界。4月,“试管婴儿之父”罗伯特·爱德华兹病逝。英国民众支持“一父两母”三人遗传物质的人工授精技术,英国政府也在6月称支持这一技术。7月,首次将全基因组筛查技术应用于筛查由体外受精获得的胚胎是否存在染色体异常,英国首例接受全基因组筛查的试管婴儿也随之诞生。

法国

加强分子生物技术研究,揭示生物基本结构与活动机制,注重成果在医药、化工等领域的应用转化。

李宏策(科技日报驻法国记者)法国一支科研团队揭示了趋磁细菌体内MamP蛋白主导合成磁小体的机制及其结构特征,使人们对“生物矿化”有了进一步理解,有望将这一机制用于医学和污水处理等方面。

法国科研人员通过对长囊水云的研究,发现了利用酶合成鼠尾藻多酚的新机制及其关键步骤,大大简化了商业制备鼠尾藻多酚的生产过程。鼠尾藻多酚是海洋褐藻所特有的一种酚类化合物,可用于生产各类化妆品,并能够预防和治疗癌症、心血管疾病、神经退行性疾病及消除炎症。

巴斯德研究院发现,一种被称作嗜中性粒细胞的免疫细胞在癌症免疫治疗过程中起主导作用,而非此前认为的自然杀伤细胞和巨噬细胞,有助于促进癌症免疫疗法的优化与发展;他们还首次在原子尺度上探明了乙醇,即饮料中酒精对中枢神经系统受体的影响,有助于开发拮抗剂化合物来缓解酒精对大脑的影响。

图卢兹普尔潘病理生理研究中心发现,人类母胎中的某些免疫细胞可以阻止病毒感染胎儿,为治疗先天性巨细胞病毒感染症等遗传疾病开辟了新的治疗途径。

德国

深化疾病病理研究,传染病、癌症和老年痴呆症治疗方面获多项进展,个性化医疗研究得到推进。

李山(科技日报驻德国记者)传染病方面,德国灵长类动物研究中心发现了一种蛋白酶有助于MERS冠状病毒的感染。亥姆霍兹感染研究中心在8种代表Ⅱ型CRISPR-Cas的菌株中研究了双链RNA:Cas9的多样性和互换性。

癌症研究方面,蒂宾根大学发现,联合使用γ-干扰素和肿瘤坏死因子可以完全抑制肿瘤细胞生长。海德堡大学等发现一种具有抗癌性能的细胞核内蛋白质Nup98,可使细胞内的P53不过早出现分解。保罗-艾尔利希研究所发现经过基因改造的麻疹病毒可有效控制多种实验动物体内的肿瘤。马克斯普朗克神经科学研究所发现血管内皮生长因子也直接作用于产生该因子的肿瘤细胞。

老年痴呆症研究方面,慕尼黑大学等发现有效物质Anle138b能有效抑制损害脑细胞的蛋白质集聚,明显减缓帕金森病症状的发展。马克斯普朗克分子生物医学所等通过“基因手术”成功对实验室培养的帕金森患者病变细胞基因缺陷进行了纠正。马克斯普朗克老年生物学研究所发现衰老还受到从母体获得的遗传信息线粒体DNA的直接影响。德国柏林自由大学等研究发现,与年龄有关的记忆能力下降可通过天然物质亚精胺来阻止。

新疗法方面,莱比锡大学提取毛囊外毛鞘干细胞培养黑素细胞,开发出治疗白癜风的自体细胞疗法。蒂宾根大学在实验室培养的椎间盘细胞中嵌入智能生物材料,再注射到患者椎间盘中,开发出椎间盘疾病治疗新策略;他们还发明了一种微型芯片,植入眼球后方可帮助一种失明患者恢复部分视力。柏林自由大学等通过应用糖蛋白生成的鼠疫抗体,研发一种简单、便宜又可靠的检测鼠疫病菌的方法。

此外,亥姆霍兹糖尿病和肥胖研究所等发现分子受体GPR83不仅参与体重调控,而且在能量代谢调控中发挥决定性作用。夏洛特柏林大学医学院揭示了一个关键的蛋白质结构,阐明了与受体的互动由一种抑制蛋白来激活的分子机制。莱布尼兹波罗的海研究所在波罗的海中心深处发现了至今未知、代号SUP05的细菌对缺氧环境下形成的高毒性硫化物具有专一分解能力。

德国参与的国际合作团队也有突出贡献,一个团队发现了9个基因区域与原发性硬化性胆管炎(PSC)的联系;另一个团队则发布了一张人类功能性遗传变异的综合图谱,提供了有史以来RNA水平上最大的人类基因组与基因活性数据集。

俄罗斯

纳米疫苗研制工作取得重大进展。

张浩(科技日报驻俄罗斯记者)2013年,俄罗斯纳米疫苗研制工作取得重大进展。根据俄联邦生物医学署发布的信息,俄罗斯科学家研制的三种最新纳米疫苗已进入临床前试验阶段,这三种疫苗分别为抗结核杆菌、艾滋病和癌细胞(针对个别几种癌细胞有效)疫苗。目前,世界上的所有实际应用的疫苗大都采用病毒活体或者“病毒体灭活”方式,而俄研制的这三种疫苗是利用病原体的RNA,通过医学与纳米技术的结合,制备出纳米疫苗。其中的抗艾滋病疫苗已经处于第二期临床前试验阶段,且显示出了很高的有效性。

2013年,来自俄罗斯科学院生物有机化学研究所、美国哈佛医学院、瑞士洛桑理工学院的科学家团队对细菌的进攻机制进行了研究,揭示了在同一环境下,不同细菌会为了各自的生存而互相攻击。这一发现将有可能帮助人类找到破坏细菌进攻系统的简易方法,从而有助于研制用于治疗细菌性脑膜炎、肺炎、布氏杆菌病、鼠疫等严重传染性的新一代药物。

加拿大

合作研发出新型抗癌特效药;成功制作首个超高精度三维脑图像;揭示大脑可塑性形成机制;提出确定分子手性新方法。

冯卫东(科技日报驻加拿大记者)加拿大玛嘉烈癌症中心和美国加州大学共同研发出一款癌症特效药Sharpshooter,该药物已在实验室中证明对乳腺癌、卵巢癌、结肠癌、肺癌、胶质母细胞癌、黑色素瘤、胰腺癌和前列腺癌等广谱癌症具有有效抑制作用。研究以标靶酵素PLK4为对象,这种酵素被广泛认为在细胞(特别是癌细胞)分裂中起着重要作用。这一特效药的发现,被认为是当今治疗乳腺癌的最重要发现。

包括加拿大麦吉尔大学在内的科学家成功研制出在细胞水平上的人类大脑3D图谱,以20微米的尺度展现了人类大脑的情况,被誉为神经科学发展的里程碑。

蒙特利尔神经学研究所及其附属医院和麦吉尔大学发现,神经细胞具有一种特殊的“预组装技术”,可促进神经细胞连接(突触)处的蛋白制造,从而让大脑迅速形成记忆和塑化。此一研究结果揭示了突触可塑性的新机制,了解其中的路径有助于为神经发育疾病的治疗提供新靶点。

麦吉尔大学科学家成功结晶出一个RNA短序列——poly(rA)11,并利用加拿大光源(CLS)和康奈尔高能同步加速器收集到的数据证实了poly(rA)双螺旋假说。这一成果有助于推动合成生物学的发展。

一队来自加拿大、德国和瑞士的研究人员为确定分子手性这个具有150年历史的古老难题提出了一个新的解决方案,未来药物将可按照只存在所需手性分子的方式来生产,如此患者就可减少服用剂量,避免副作用。

加拿大研究人员确定了和心脏功能相关的最优结构和细胞比例,并由此首次设计出成活的、心律失常的三维心脏组织,可将这些组织微缩成人类心脏微组织,用于测量正常及病变人类心脏对药物的反应。

不列颠哥伦比亚省癌症研究机构开发的一种前列腺癌新药即将投入临床试验,为癌症患者带来新的希望。该团队开发EPI-001的过程中采用了新方法,鉴别出N-末端即蛋白质结构的反端区域才是真正的“病灶”,而不是像其他科学家那样专注雄性荷尔蒙受体蛋白。

玛嘉烈医院癌症中心的临床研究人员发现,未成熟祖细胞的耐药性是导致多发性骨髓瘤复发的根本原因。此项发现为治愈多发性骨髓瘤指明了一条新途径,那就是同时将祖细胞和浆细胞作为治疗靶标。

加拿大食品检验局联合非营利组织“加拿大基因组”、阿尔伯塔创新生物解决方案公司,提出一项旨在保护消费者免受李斯特菌侵扰的新研究项目。

多伦多大学研究人员首次绘制出了ABC运转蛋白的细胞“路线图”,揭示了它们与细胞中其他重要蛋白的相互作用,有助于人们进一步理解与疾病相关的蛋白质之间的互动机制,为癌症、囊性纤维化及其他多种病症带来更好疗法。

麦吉尔大学和卡尔加里大学的科学家们发现癌症能够通过劫持白细胞进行扩散。这一发现是人类在认识癌细胞扩散方面的一个突破性进展,有助于医疗人员更有效地诊断和治疗癌症。

麦克马斯特大学利用一种基因改良过的感冒病毒制造出新型结核病疫苗,可帮助对抗引起肺结核的结核杆菌。在接种卡介苗后使用,可提高卡介苗功效。

韩国

韩国未来创造科学部提出生物医疗技术项目,向相关研究机构提供政策和资金支持。

薛严(科技日报驻韩国记者)韩国科学技术院(KAIST)研究人员成功开发出利用大肠杆菌生产治疗忧郁症和痴呆所需物质——酪氨酸的新方法。该研究组用核糖核酸(RNA)技术插入制造酪氨酸所需的基因(去除妨碍生产的基因)培养大肠杆菌。培养大肠杆菌的器具每升生产出了21.9克酪氨酸和12.6克尸胺(聚酰胺纤维,尼龙的原料),比现有技术的生产量多出了30%。

韩国全南大学和生命工学研究院研究人员发现了在酒精性肝损坏过程中发挥核心作用的蛋白质和可以抑制这种蛋白质的物质,为研发治疗酒精性肝损坏的药物带来了希望。

9月,韩国未来创造科学部表示,朝鲜大学医学院研究人员发现了可以导致大肠癌产生和转移的蛋白质APEX1。APEX1在细胞内可以通过调整多种基因而导致多种生命现象。动物实验显示APEX1和肿瘤发生有着密切的关系。利用这一关系有助于预测大肠癌细胞的产生和转移,抑制大肠癌细胞的增殖。

以色列

脑科学研究精彩纷呈,干细胞研究成果丰硕,一批基于生物材料技术的医疗设备出现。

冯志文(科技日报驻以色列记者)以色列红利生物集团有限公司开始建设世界上第一个生产再生骨的工厂,包括骨移植中心、研发中心及一个总部和管理中心。

洞察力技术公司(InSightec)研制出不用在头颅上开洞就能实施神经外科手术的设备。基于MRI扫描提供的准确的脑部图像,他们使用1000倍聚焦超声波束可穿透完整头骨并清除病灶。

以色列理工学院用人类胚胎干细胞创造出有自己血液供应的心脏肌肉,可修复和替代因心脏病受损的心脏;该校还发现光电效应可控制纳米孔传感器通道,改进了使用固态纳米孔的方法,使DNA测序更精确、成本低且超快速。

魏兹曼科学院分离出了能产生含有来自人体组织的“人源化”小鼠模型的多能干细胞。他们创造的诱导多能干细胞可完全“复位”,为未来提升移植器官功能铺平道路;他们还揭示了人脑小胶质细胞的某些神秘特性,为治疗老年痴呆症、肌萎缩症等脑健康疾病带来光明。

特拉维夫大学科研人员通过收集鼻子中的活检组织,从鼻内神经元来诊断早期精神分裂症,提高了确诊速度和准确性。
楼主热帖
回复

使用道具 举报

发表回复

您需要登录后才可以回帖 登录 | 立即注册 微信登录 手机动态码快速登录

本版积分规则

关闭

官方推荐 上一条 /3 下一条

快速回复 返回列表 客服中心 搜索 官方QQ群 洽谈合作
快速回复返回顶部 返回列表