立即注册找回密码

QQ登录

只需一步,快速开始

微信登录

微信扫一扫,快速登录

手机动态码快速登录

手机号快速注册登录

搜索

图文播报

查看: 4641|回复: 0

[分享] 一文了解SU-8光刻胶

[复制链接]
发表于 2023-7-25 11:00 | 显示全部楼层 |阅读模式

登陆有奖并可浏览互动!

您需要 登录 才可以下载或查看,没有账号?立即注册 微信登录 手机动态码快速登录

×
光刻胶又称光致抗蚀剂,是一种对光敏感的混合液体。其组成部分包括:光引发剂(包括光增感剂、光致产酸剂)、光刻胶树脂、单体、溶剂和其他助剂。光刻胶可以通过光化学反应,经曝光、显影等光刻工序将所需要的微细图形从光罩(掩模版)转移到待加工基片上。依据使用场景,这里的待加工基片可以是集成电路材料,显示面板材料或者印刷电路板。
据第三方机构智研咨询统计,2019年全球光刻胶市场规模预计近90亿美元,自 2010年至今CAGR5.4%。预计该市场未来3年仍将以年均5%的速度增长,至2022年全球光刻胶市场规模将超过100亿美元。光刻胶按应用领域分类,可分为 PCB 光刻胶、显示面板光刻胶、半导体光刻胶及其他光刻胶。全球市场上不同种类光刻胶的市场结构较为均衡,具体占比可以如下图所示。
智研咨询的数据还显示,受益于半导体、显示面板、PCB产业东移的趋势,自 2011年至今,光刻胶中国本土供应规模年化增长率达到11%,高于全球平均 5%的增速。2019年中国光刻胶市场本土企业销售规模约70亿元,全球占比约 10%,发展空间巨大。目前,中国本土光刻胶以PCB用光刻胶为主,平板显示、半导体用光刻胶供应量占比极低。中国本土光刻胶企业生产结构可以如图所示。
光刻胶分类
在平板显示行业;主要使用的光刻胶有彩色及黑色光刻胶、LCD触摸屏用光刻胶、TFT-LCD正性光刻胶等。在光刻和蚀刻生产环节中,光刻胶涂覆于晶体薄膜表面,经曝光、显影和蚀刻等工序将光罩(掩膜版)上的图形转移到薄膜上,形成与掩膜版对应的几何图形。
PCB行业;主要使用的光刻胶有干膜光刻胶、湿膜光刻胶、感光阻焊油墨等。干膜是用特殊的薄膜贴在处理后的敷铜板上,进行曝光显影;湿膜和光成像阻焊油墨则是涂布在敷铜板上,待其干燥后进行曝光显影。干膜与湿膜各有优势,总体来说湿膜光刻胶分辨率高于干膜,价格更低廉,正在对干膜光刻胶的部分市场进行替代。
在半导体集成电路制造行业;主要使用g线光刻胶、i线光刻胶、KrF光刻胶、ArF光刻胶等。在大规模集成电路的制造过程中,一般要对硅片进行超过十次光刻。在每次的光刻和刻蚀工艺中,光刻胶都要通过预烘、涂胶、前烘、对准、曝光、后烘、显影和蚀刻等环节,将光罩(掩膜版)上的图形转移到硅片上。
光刻胶是集成电路制造的重要材料:光刻胶的质量和性能是影响集成电路性能、成品率及可靠性的关键因素。光刻工艺的成本约为整个芯片制造工艺的35%,并且耗费时间约占整个芯片工艺的40%-50%。光刻胶材料约占IC制造材料总成本的4%,市场巨大。因此光刻胶是半导体集成电路制造的核心材料。
按显示效果分类;光刻胶可分为正性光刻胶和负性光刻胶。负性光刻胶显影时形成的图形与光罩(掩膜版)相反;正性光刻胶形成的图形与掩膜版相同。两者的生产工艺流程基本一致,区别在于主要原材料不同。
按照化学结构分类;光刻胶可以分为光聚合型,光分解型,光交联型和化学放大型。光聚合型光刻胶采用烯类单体,在光作用下生成自由基,进一步引发单体聚合,最后生成聚合物;
光分解型光刻胶,采用含有重氮醌类化合物(DQN)材料作为感光剂,其经光照后,发生光分解反应,可以制成正性光刻胶;光交联型光刻胶采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,形成一种不溶性的网状结构,而起到抗蚀作用,可以制成负性光刻胶。
在半导体集成电路光刻技术开始使用深紫外(DUV)光源以后,化学放大(CAR)技术逐渐成为行业应用的主流。在化学放大光刻胶技术中,树脂是具有化学基团保护因而难以溶解的聚乙烯。化学放大光刻胶使用光致酸剂(PAG)作为光引发剂。
当光刻胶曝光后,曝光区域的光致酸剂(PAG)将会产生一种酸。这种酸在后热烘培工序期间作为催化剂,将会移除树脂的保护基团从而使得树脂变得易于溶解。化学放大光刻胶曝光速递是DQN光刻胶的10倍,对深紫外光源具有良好的光学敏感性,同时具有高对比度,对高分辨率等优点。
按照曝光波长分类;光刻胶可分为紫外光刻胶(300~450nm)、深紫外光刻胶(160~280nm)、极紫外光刻胶(EUV13.5nm)、电子束光刻胶、离子束光刻胶、X射线光刻胶等。不同曝光波长的光刻胶,其适用的光刻极限分辨率不同。通常来说,在使用工艺方法一致的情况下,波长越短,加工分辨率越佳。
光刻胶是半导体制程技术进步的“燃料”
在集成电路制造领域,如果说光刻机是推动制程技术进步的“引擎”,光刻胶就是这部“引擎”的“燃料”。下图展示了光刻胶如何在一个NMOS三极管的制造工艺中发挥作用。NMOS三级管是半导体制程工艺中最常用的集成电路结构之一。
在这样一个典型例子中,步骤1中的绿色部分代表红色部分多晶硅材料被涂上了一层光刻胶。在步骤2的光刻曝光过程中,黑色的掩膜遮挡范围之外的光刻胶被都被光刻光源照射,发生了化学性质的改变,在步骤3中表现为变成了墨绿色。在步骤4里,经过显影之后,红色表征的多晶硅材料上方只有之前被光罩遮挡的地方留下了光刻胶材料。
于是,光罩(掩模版)上的图形就被转移到了多晶硅材料上,完成了“光刻”的过程。在此后的步骤5到步骤7里,基于“光刻”过程在多晶硅材料上留下的光刻胶图形,“多晶硅层刻蚀”、“光刻胶清洗”和“N+离子注入”工艺共同完成了一个NMOS 三极管的构造。
上图步骤1中的光刻胶涂胶过程也是一种重要的半导体工艺。其目的就是在晶圆表面建立轻薄,均匀且没有缺陷的光刻胶膜。一般来说,光刻胶膜厚度从0.5um1.5um 不等,厚度的误差需要在正负0.01um以内。半导体光刻胶的涂敷方法主要是旋转涂胶法,具体可以分为静态旋转法和动态喷洒法。
静态旋转法:首先把光刻胶通过滴胶头堆积在硅片的中心,然后低速旋转使得光刻胶铺开,再以高速旋转甩掉多余的光刻胶。在高速旋转的过程中,光刻胶中的溶剂会挥发一部分。这个过程可以如图表16中所示。静态涂胶法中的光刻胶堆积量非常关键,量少了会导至光刻胶不能充分覆盖硅片,量大了会导至光刻胶在硅片边缘堆积甚至流到硅片的背面,影响工艺质量。
动态喷洒法:随着硅片尺寸越来越大,静态涂胶已经不能满足最新的硅片加工需求。相对静态旋转法而言,动态喷洒法在光刻胶对硅片进行浇注的时刻就开始以低速旋转帮助光刻胶进行最初的扩散。这种方法可以用较少量的光刻胶形成更均匀的光刻胶铺展,最终以高速旋转形成满足厚薄与均匀度要求的光刻胶膜。
随着IC集成度的提高,世界集成电路的制程工艺水平已由微米级、亚微米级、深亚微米级进入到纳米级阶段。集成电路线宽不断缩小的趋势,对包括光刻在内的半导体制程工艺提出了新的挑战。在半导体制程的光刻工艺中,集成电路线宽的特征尺寸可以由如右所示的瑞利公式确定:CD= k1*λ/NA
CD (Critical Dimension)表示集成电路制程中的特征尺寸;k1是瑞利常数,是光刻系统中工艺和材料的一个相关系数;λ是曝光波长,而NA(Numerical Aperture)则代表了光刻机的孔径数值。因此,光刻机需要通过降低瑞利常数和曝光波长,增大孔径尺寸来制造具有更小特征尺寸的集成电路。其中降低曝光波长与光刻机使用的光源以及光刻胶材料高度相关。
历史上光刻机所使用的光源波长呈现出与集成电路关键尺寸同步缩小的趋势。不同波长的光刻光源要求截然不同的光刻设备和光刻胶材料。在20世纪80年代,半导体制成的主流工艺尺寸在1.2um(1200nm)0.8um(800nm)之间。那时候波长436nm的光刻光源被广泛使用。在90年代前半期,随着半导体制程工艺尺寸朝 0.5um500nm)和0.35um350nm)演进,光刻开始采用365nm波长光源。
436nm365nm光源分别是高压汞灯中能量最高,波长最短的两个谱线。高压汞灯技术成熟,因此最早被用来当作光刻光源。使用波长短,能量高的光源进行光刻工艺更容易激发光化学反应、提高光刻分别率。以研究光谱而闻名的近代德国科学家约瑟夫·弗劳恩霍夫将这两种波长的光谱分别命名为G线和I线。这也是 g-line光刻和 i-line光刻技术命名的由来。
g-linei-line光刻胶均使用线性酚醛成分作为树脂主体,重氮萘醌成分(DQN 体系)作为感光剂。未经曝光的DQN成分作为抑制剂,可以十倍或者更大的倍数降低光刻胶在显影液中的溶解速度。
曝光后,重氮萘醌(DQN)基团转变为烯酮,与水接触时,进一步转变为茚羟酸,从而得以在曝光区被稀碱水显影时除去。由此,曝光过的光刻胶会溶解于显影液而被去除,而未曝光的光刻胶部分则得以保留。虽然g-line光刻胶和i-line 光刻胶使用的成分类似,但是其树脂和感光剂在微观结构上均有变化,因而具有不同的分辨率。G-line光刻胶适用于0.5um(500nm)以上尺寸的集成电路制作,而i-line光刻胶使用于0.35um350nm0.5um500nm)尺寸的集成电路制作。
此外,这两种光刻胶均可以用于液晶平板显示等较大面积电子产品的制作。
90年代后半期,遵从摩尔定律的指引,半导体制程工艺尺寸开始缩小到0.35um350nm)以下,因而开始要求更高分辨率的光刻技术。深紫外光由于波长更短,衍射作用小,所以可以用于更高分辨率的光刻光源。随着 KrFArF等稀有气体卤化物准分子激发态激光光源研究的发展,248nmKrF)、193nnmArF)的光刻光源技术开始成熟并投入实际使用。
然而,由于 DQN 体系光刻胶对深紫外光波段的强烈吸收效应,KrFArF作为光刻气体产生的射光无法穿透DQN光刻胶,这意味着光刻分辨率会受到严重影响。因此深紫外光刻胶采取了与i-lineg-line光刻胶完全不同的技术体系,这种技术体系被称为化学放大光阻体系(Chemically Amplified Resist, CAR)
CAR技术体系中,光刻胶中的光引发剂经过曝光后并不直接改变光刻胶在显影液中的溶解度,而是产生酸。在后续的热烘培流程的高温环境下,曝光产生的酸作为催化剂改变光刻胶在显影液中的溶解度。因此CAR技术体系下的光引发剂又叫做光致酸剂。
由于CAR光刻胶的光致酸剂产生的酸本身并不会在曝光过程中消耗而仅仅作为催化剂而存在,因此少量的酸就可以持续地起到有效作用。CAR光刻胶的光敏感性很强,所需要从深紫外辐射中吸收的能量很少,大大加强了光刻的效率。CAR 光刻胶曝光速递是 DQN 光刻胶的10倍左右。
90 年代后半期开始,光刻光源就开始采用 248nm KrF 激光;而从 2000 年代开始,光刻就进一步转向使用193nm 波长的 ArF 准分子激光作为光源。在那之后一直到今天的约 20 年里,193nm 波长的 ArF 准分子激光一直是半导体制程领域性能最可靠,使用最广泛的光刻光源。
一般而言,KrF248nm)光刻胶使用聚对羟基苯乙烯及其衍生物作为成膜树脂,使用磺酸碘鎓盐和硫鎓盐作为光致酸剂;而ArF193nm)光刻胶则多使用聚甲基丙烯酸酯衍生物,环烯烃-马来酸酐共聚物,环形聚合物等作为成膜树脂;由于化学结构上的原因,Arf(193nm)光刻胶需要比KrF248nm)光刻胶更加敏感的光致酸剂。
免责声明:文章来源汶颢 www.whchip.com  以传播知识、有益学习和研究为宗旨。 转载仅供参考学习及传递有用信息,版权归原作者所有,如侵犯权益,请联系删除。

楼主热帖
回复

使用道具 举报

发表回复

您需要登录后才可以回帖 登录 | 立即注册 微信登录 手机动态码快速登录

本版积分规则

关闭

官方推荐 上一条 /3 下一条

快速回复 返回列表 客服中心 搜索 官方QQ群 洽谈合作
快速回复返回顶部 返回列表